

Designing the Haptic Interface for Morse Code

by

Michael Walker

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Mechanical Engineering

Department of Mechanical Engineering

College of Engineering

University of South Florida

Major Professor: Kyle Reed, Ph.D.

Stephanie Carey, Ph.D.

Don Dekker, Ph.D.

Date of Approval:

October 24, 2016

Keywords: Bimanual, Rehabilitation, Pattern, Recognition, Perception

Copyright © 2016, Michael Walker

ACKNOWLEDGMENTS

I would like to thank my thesis advisor, Dr. Kyle Reed, for providing guidance for my

first steps in research work and exercising patience and understanding through my difficulties

through the process of creating this thesis. I am thankful for my colleagues in REED lab,

particularly Benjamin Rigsby and Tyagi Ramakrishnan, for providing helpful insight in the

design of my experimental setup.

i

TABLE OF CONTENTS

LIST OF TABLES ... iii

LIST OF FIGURES ... iv

ABSTRACT ...v

CHAPTER 1: INTRODUCTION ...1

1.1 Motivation ...1

1.2 Literature Overview ..2

1.2.1 Errors in Morse Code ...2

1.2.2 Stimulus Discrimination between Hemispheres ..4

1.2.3 The Enumeration Process: Subtilizing vs. Counting6

1.2.4 The Neurological Processing of Morse Code ..7

1.2.5 Morse Code Timing ...7

CHAPTER 2: EXPERIMENTAL SETUP ...8

2.1 Setup Design that Influences Perception ..8

2.1.1 Bimanual Versus Unimanual Haptic Presentation ...8

2.1.2 Farnsworth Spacing ...10

2.2 Morse Code Characters used for Experiment ...11

2.3 Experimental Design ...12

2.4 Description of MATLAB Testing Program ..13

2.4.1 Test Phases and their Role ...14

2.5 Description of Haptic Setups ..16

2.5.1 Haptic Interfaces for Assisting in Enumeration Tasks18

2.5.2 Increasing Communication Speed with a Bimanual Setup19

CHAPTER 3: RESULTS ..20

3.1 Setup Performance Overview ...20

3.2 Significance of Order ..22

3.3 Categorical Errors ...22

CHAPTER 4: DISCUSSION ..24

4.1 Significance of Results ...26

4.2 Difficulty Scaling of Tests ..27

4.3 Minimizing the Effect of the Learning Curve...28

4.4 Other Applications ..29

4.4.1 Virtual Reality ..29

ii

4.4.2 Obstacle Avoidance for Persons who are Visually Impaired29

4.5 Future Work ..29

4.5.1 Determine if Hemispheric Interference Occurs For a Morse Code Task29

4.5.2 Determine if a Judgment Buffer Occurs For a Morse Code Task30

4.5.3 Design a More Intuitive Haptic Setup for Counting30

CHAPTER 5: CONCLUSIONS ...32

REFERENCES ..34

APPENDIX A: ERROR PAIR DATA ...35

APPENDIX B: DOCUMENTS PRESENT IN EXPERIMENT ..36

APPENDIX C: MATLAB CODE ..40

C.1 Main Script ...40

C.1.1 Contents ...40

C.1.2 Defining Variables ..40

C.1.3 Allocate Excel Sheet for Data Storage ..40

C.1.4 Workaround Code so that MATLAB Writes Into Excel Much Faster41

C.1.5 Instructions for Segments of Experiment ..41

C.1.6 Element Time Durations Calculated for Setup 1 (Traditional)43

C.1.7 Recalculate Element and Letter Spacing for Setup 5 (OLD)43

C.1.8 Recalculate Element and Letter Spacing for Setups 6 and 7 (OLD)44

C.1.9 Morse Code Identifiers ..44

C.1.10 Identifying Letters from Answer Key Permutation44

C.1.11 Identifying User Input Letters ...46

C.1.12 Sending Morse Code to User ..46

C.1.13 Creating Display Interface for Test 1 ..48

C.1.14 Creating Display Interface for Test 2 ..48

C.1.15 Plotting Test 2 ...49

C.1.16 Creating Display Interface for Test 3 ..49

C.1.17 Creating Display Interface for Test 4,5,6,7 ...50

C.1.18 Plotting Test 4,5,6,7 ..50

C.1.19 Write Data to Excel Sheet after Test Completion53

C.2 Setup Function..53

C.2.1 Contents ...53

C.2.2 Vibration Setup 1: Traditional Morse Code ..53

C.2.3 Vibration Setup 2: Left/Right Presentation ...54

C.2.4 Vibration Setup 3: Left/Right Presentation with Dot Equal Dash54

C.2.5 Vibration Setup 4: Counting with Three Motors ..54

C.2.6 Vibration Setup 5: Bilateral Subtilizing (OLD) ..56

C.3 Motor Test ..57

iii

LIST OF TABLES

Table 3.1 Percent contribution towards errors made of the four categorized

 errors within each setup ...23

Table 3.2 Frequency of error pairs to appear within all possible error

 pair combinations ...23

Table A.1 Error pair data per setup for all subjects ..35

iv

LIST OF FIGURES

Figure 1.1 Visual representation of Kinsbourne and Cook’s experiment5

Figure 1.2 Charrn’s experimental setup ..5

Figure 1.3 Morse code timing scheme ..7

Figure 2.1 Representation of processing tasks in the left and right hemispheres of the

 brain when using a bimanual setup ..9

Figure 2.2 Time lapse of interference for unimanual and bimanual setups10

Figure 2.3 The twelve selected Morse code characters ...11

Figure 2.4 MATLAB Flowchart ...15

Figure 2.5 Motor arrangement for haptic setup 4 ..17

Figure 2.6 The four haptic setups ..18

Figure 2.7 How a bimanual setup can reduce communication time ...19

Figure 3.1 Post hoc test between all setups for mean error ...21

Figure 3.2 Post hoc test between all tests for mean error ..21

Figure 3.3 Post hoc tests of all mean error based on order ...22

Figure 4.1 Proposed motor arrangement design to facilitate counting with motor intensity31

Figure B.1 Overview of the four haptic setups ..36

Figure B.2 Sheet of paper used to record answers for three character string tests37

Figure B.3 Sheet of paper showing the 12 possible characters ..38

Figure B.4 Sheet of paper with the 12 Morse code characters for studying purposes39

v

ABSTRACT

Two siblings have a muscular degenerative condition that has rendered them mostly

blind, deaf and paraplegic. Currently, the siblings receive communication by close range sign

language several feet in front of their vision. Due to the degenerative nature of their condition, it

is believed that the siblings will eventually become completely blind and unable to communicate

in this fashion. There are no augmented communication devices on the market that allow

communication reception for individuals who cannot see, hear or possess hand dexterity (such as

braille reading). To help the siblings communicate, the proposed communication device will

transmit Morse code information tactically with vibration motors to either the forearm or bicep in

the form of an armband wearable. However, no research has been done to determine the best

haptic interface for displaying Morse code in a tactile modality. This research investigates

multiple haptic interfaces that aim to alleviate common mistakes made in Morse code reception.

The results show that a bimanual setup, discriminating dots/dashes by left/right location, yields

56.6% the amount of Morse code errors made under a unimanual setup of Morse code that uses

temporal discrimination to distinguish dots and dashes. The bimanual condition resulted in less

judgment interference that is either due to the brain having an easier time processing two

separate tasks when judgments are shared between the hemispheres or a judgment buffer effect

being present for temporal discrimination.

1

CHAPTER 1: INTRODUCTION

1.1 Motivation

Two siblings, a brother and sister, were born with a neuromuscular degenerative disease

that has severely impaired their hearing, vision and ability to move. Currently, the siblings are

completely deaf and nearly fully blind. The siblings have lost the neuromuscular capacity to

breathe on their own. A machine pumps air through a tracheostomy tube to allow breathing, but

cuts off use of their voice boxes. Currently, the siblings lip speaks words to a translator. The

translator talks back with sign language several feet in front of the siblings’ vision. It is expected

that their degenerative condition will worsen the sibling’s eyesight to the point where sign

language will be an unfeasible method of receiving communication. Persons whom are blind and

deaf typically use braille reading as a method of receiving communication. However, the siblings

do not possess the physical dexterity to move their fingers in such a way to make use of braille.

Currently, there is no augmented communication method or device that is suitable for the

siblings. This research explores the possibility of using Morse code for communication through

the tactile channel.

Morse code has historically been expressed in the audio and visual modalities, with dots

and dashes being distinguishable by stimulus duration (a dash has stimulus duration three times

longer than a dot). It is this author’s theory that location of stimulus will allow a stronger

perceptual disparity for the Morse code elements in a tactile modality. It is proposed that a

2

device with a haptic interface could transmit Morse code tactilely in the form of an armband

worn on the left and right forearms.

1.2 Literature Overview

1.2.1 Errors in Morse Code

 Richard Highland categorized frequent errors made in Morse code copying among 807

Air Force radio operator trainees who have passed a 7 wpm code check that were tasked to learn

to copy Morse code received by an audio signal at 9 wpm though several code checks in a given

day. Operators whom did not achieve 80% accuracy or did not perform a code check at least 1.5

times per day were discarded from the study, leaving 299 subjects. Errors in copying code were

classified into four categories, what Highland refers to as the four ―Factors‖. These categories

were present in 85.8% of all errors made (Richard W. Highland, 1958). The description of these

categories, as described by Highland, as well as their contribution of all errors made, is as

follows:

1. Dash Estimation (8.4%): ―This factor is confined to those signals which contain a

number of dashes. In all of these signals, the dashes occur in a series either at the

beginning or end of the signal or comprise the entire signal. In no case is there a dot

interspersed within the series of dashes, either in the way the signal is sent or perceived.

The error is always in estimating the correct number of dashes in the signal. This error

may be one of omission or addition; that is, the S [. . .] may perceive one too many or one

too few dashes, but he never "shortens" a dash to a dot or "lengthens" a dot to a dash. The

number of dots in these signals is always perceived correctly.‖

2. Dot Estimation (36.2%): ―This factor involves signals consisting mainly of dots. The dots

always come in a row either at the beginning or end of the signal or else the signal

3

consists only of dots. No dash ever separates the dot sequences either in the signal

actually sent or in the signal as perceived. This appears to be the dot counterpart of Factor

I. In this factor the error is always in estimating the correct number of dots in a series. No

errors are made in estimating the number of dashes. The factor includes both

overestimates and underestimates of the number of dots in a series; however, it appears

most strongly in errors of underestimation with signals containing a long series of dots.‖

3. End-element Substitution (30.1%): ―The stimulus characters loaded on this factor are of

varied types (i.e., predominantly dots, predominantly dashes and mixed elements), but the

type of error made is completely consistent from character to character. In each case, an

error of substitution is made and this error always occurs on the last element of the

character sent. The substitution may be either a dot for a dash or a dash for a dot. The

trainee, in these instances, always perceived the correct number of elements per

character.‖

4. Internal Error (11.1%): ―This factor extends to fewer variables than was the case with

the previous factors, and interpretation, therefore, is not as secure. All the characters sent

consist of both dots and dashes. These occur as two series, dots followed by dashes or

dashes followed by dots. The characters do not involve changes from dots to dashes and

back to dots again or changes from dashes to dots and back to dashes again. The

distinguishing features of three out of four of these variables is that an internal

substitution error is made. These three variables involve the sending of five-element

characters; the substitution error occurs precisely in the middle element. Further, the error

occurs at the end of the initial dot or dash series within the signal.‖

4

1.2.2 Stimulus Discrimination between Hemispheres

Representing Morse code elements with tactile stimulus brings the extra dimension of

tactile space to be explored as a factor that could potentially improve tactile temporal numerosity

judgments (TTNJ). Bradshaw concluded that an intermanual condition lead to faster completion

of judgment tasks than an intramanual condition. The results imply that the processing load

being shared between two hemispheres is more efficient than information processed in just one

hemisphere (John L. Bradshaw, 1998). Craig came to the same conclusion in his research, where

subjects were presented tactile patterns in rapid succession either inter or intramanually, noting

that the intermanual advantage disappeared after a 400 ms delay between stimuli (Craig, 1985).

The hemispheric models of Friedman and Polsen state that the left and right hemispheres

have a finite amount of processing resource pools. Interference occurs when multiple tasks are

using the same processing resource pool of a hemisphere (Friedman & Polson, 1981). This

model is further supported by Kinsbourne and Cook’s experiment, where subjects were tasked to

balance a wooden dowel on their left and right index fingers while speaking. An illustration of

this experiment is shown in Figure 1.1. Results showed a decreased performance of dowel

balancing in the right index finger when subjects were asked to repeat a verbalized sentence.

Kinsbourne and Cooks postulated that this decline of performance when a verbal task was

introduced was due to interference occurring in the left hemisphere. Right sided motor control

and verbalization tasks have cortical centers in the left hemisphere. Kinsbourne and Cooks

suggested that interference is a function of the distance between cortical spaces, with more

interference occurring when this distance is shorter as a result of resource sharing (Marcel

Kinsbourne, 1971) .

5

Figure 1.1: Visual representation of Kinsbourne and Cook’s experiment. Subjects had a harder

time balancing dowels with their right finger when performing a verbal task. This image was

adapted.

Charron et al concluded that there exists stimulus degradation when performing an

interhemispheric passage of information. The experimental setup (shown in Figure 1.2)

measured accuracy of determining the span between two-points of tactile stimulus was same or

different than another two-point span, either inter or interamanually. Smaller span differences

close to JND showed a more significant advantage towards an interamanual condition 4.74%

(Jean-Francois Charron, 1996). Charron shows that there is an interhemispheric disadvantage

when performing a judgment task between hemispheres as stimulus information must pass from

one hemisphere to the other for comparison and this information degrades over this time lapse.

Figure 1.2: Charrn’s experimental setup. (a) two-point aesthesiometer used to provide two point

tactile stimulus. (b) intermanual condition where subjects were asked to confirm if two tactile

patterns between stimulus pints were same or different. (c) Intramanual condition where the two

tactile patterns are presented on the same hand. This image was adapted.

6

Naoki Iida Conducted several experiments to test the effects of unimanual and bimanual

presentations of rapidly sequenced vibrations on tactile temporal numerosity judgments (TTNJs).

For the unimanual condition, subjects received vibrations on two fingers on the same hand (the

index and middle finger). In the bimanual condition, vibrations were sent to the left and right

index fingers. Subjects were asked to count how many vibrations occurred for each stimulus

location for both the unimanual and bimanual condition. Results showed a significantly higher

success rate for this TTNJ task occurred when subjects received stimulus in the bimanual

condition rather than the unimanual condition. It was also noted that when task performance

went down, the numbers of vibrations were underestimated. This result suggests that stimulus

labeling is an easier task to perform when stimulus is received separately between the

hemispheres. Results from Naoki Iida’s experiments also demonstrated that TTNJ task difficulty

was largely a function of stimulus onset asynchrony (SOA) than numerocity of chained stimulus

(Naoki Iida, 2016).

1.2.3 The Enumeration Process: Subtilizing vs. Counting

Verlaers concluded from his experiments that haptic subtilizing haptic geometrical

patterns can take place. Subtilizing is most accurate for few items (>3) and fast enumeration

(<100 items/sec) where counting is better suited for tasks of many items for slower enumeration

(>200 items/sec). Subjects used their index finger to scan tactile bumps on a flat surface, similar

to braille, in geometric patterns. to test if subjects were capable of performing the enumeration

process of counting the dots faster when dots were organized in configured patterns (triangle,

squares) versus being presented in a straight line. It was found that configured patterns lead to

faster enumeration, which suggests subtilizing took place (K. Verlaers, 2015).

7

1.2.4 The Neurological Processing of Morse Code

Lara Schlaffke found that Morse code is a two-task process. The first task is a perception

process of identifying stimulus length (deciding whether a stimulus is labeled as a dot or a dash).

Once this stimulus has been successfully identified, a lexico-semantic analysis is performed to

identify words from non-word elements (Lara Schlaffke, 2015).

1.2.5 Morse Code Timing

Relative timing is how Morse code elements are discerned from one another. Figure 1.3

shows the amount of time units to represent all the Morse code elements. Morse code speed is

quantified in terms of words per minute (wpm). The word PARIS is considered as the standard

word for calculating the value of a time unit from a known wpm speed.

Figure 1.3: Morse code timing scheme. Morse code elements are distinguished in terms of the

amount of time units a stimulus is active or inactive. Dots and dashes are represented with active

stimulus contributing 1 and 3 time units respectively. Element gaps, letter gaps and word gaps

are represented with inactive stimulus at 1, 3 and 7 time units respectively.

8

CHAPTER 2: EXPERIMENTAL SETUP

2.1 Setup Design that Influences Perception

2.1.1 Bimanual versus Unimanual Haptic Presentation

Results from Kinsbourne and Cook’s experiment suggest that hemispheric interference

occurs when both a manual task and a verbal task occur simultaneously. Lara Schlaffke

identifies Morse code being a two-task process of stimulus identification and lexico-semantic

analysis. Sensory feedback from limbs is stored contralateral (stimulus identification) and lexico-

semantic analysis occurs in the left hemisphere along with verbal tasks. It is also important to

note that Charron found that stimulus degradation occurs between interhemispheric

communications. In Kinsbourne and Cook’s experiment, the bimanual task does not require

interhemispheric communication. Information about how well one might balance a dowel on the

right hand is unimportant to the task of balance on the left. In Charron’s experiment, stimulus on

one side of the body was compared to the other, but this task is not very challenging and does not

include an additional stimulus that might interfere with this decision. Figure 2.1 represents where

tasks are taking place for a haptic bimanual interface for Morse code. It can be seen in Figure 2.1

that both lexico-semantic analysis and dash stimulus identification occur on the same

hemisphere. It is expected that this breakup of tasks would cause significantly less Morse code

error than if dot and dash identification occurred on the same hemisphere, as these two tasks are

far more similar to one another.

9

Figure 2.1: Representation of processing tasks in the left and right hemispheres of the brain

when using a bimanual setup. This image was adapted.

Stimulus degradation occurs when dot stimulus must have its order of reception

compared to dash stimulus. Interference occurs whenever a subject is in the process of figuring

out what the perceived stimulus order translates to in terms of Morse code (lexico-semantic

analysis) and additional stimulus begins to be received once the second or third character within

a character string. With a unimanual interface, both dash and dot stimuli are being constantly

compared to determine what stimuli is considered ―long‖ or ―short‖. This creates hemispheric

interference whenever a subject is in the processes of making this comparison and an additional

Morse code element is presented. Figure 2.2 provides an example of how interference might

occur more often for a unimanual setup over a bimanual one.

10

Figure 2.2: Time lapse of interference for unimanual and bimanual setups. The bar labeled ―1‖

shows stimulus of Morse code. The bar labeled ―2‖ shows time dedicated to a judgment task of

determining if a stimulus is a dot or dash. In this example, the judgment time is slightly larger

than one time unit and judgment time occurs for the unimanual condition after the length of a dot

plus half of a time unit to confirm that stimulus has either ended (confirming stimulus is a dot) or

continuing (confirmed a dash). In the bimanual case, this judgment task begins immediately, as

all information necessary to determine what is a dot is or dash is instantaneous with stimulus

presentation. Bar ―3‖ represents the amount of judgment time it might take to classify the

character being represented in Morse code. It can be seen that less overlap of stimulus and

judgment (interference) will occur in a bimanual setup relative to a unimanual setup.

2.1.2 Farnsworth Spacing

Farnsworth spacing is a method of teaching Morse code where character elements and

inter-element have a high wpm, but characters and word spaces are longer than usual. This

method of Morse code learning encourages characters to be learned as patterns instead of

analytically identifying a character by counting the amount of dots and dashes that make it up.

In a study about how novices learn Morse code, Allan showed that novices whom learned Morse

with a pattern recognition approach achieved higher wpm in copying Morse than those whom

underwent an analytical approach. The pattern recognition group was taught the alphabet at the

speed of 20 wpm to encourage memorization of letters as sound patterns rather than an analytical

approach of memorizing how many dots/dashes were represented. The pattern recognition group

had a significantly higher knowledge of the Morse code alphabet and reached higher wpm speeds

much faster than the analytical group (Allan, 1958).

11

Farnsworth spacing serves two purposes in the experimental design. The first is to

increase the perception challenge of stimulus counting and stimulus labeling by having

characters represented at a fast pace. The second is to control difficulty by shrinking character

spacing, reducing the judgment window for lexico-semantic analysis of a character and allowing

more interference to occur.

2.2 Morse Code Characters used for Experiment

 Morse code characters were chosen in such a way to provide fairly equal representations

of Highland’s four categories of most common Morse code errors. Figure 2.3 shows the twelve

characters selected to be used in the experiment. The following is the list of the categorized error

pairs present in the study:

1. Dash Estimation: (J-W), (W-J), (1-J), (J-1), (1-W), (W-1)

2. Dot Estimation: (H-S), (S-H), (5-H), (H-5), (5-S), (S-5)

3. Internal Error: (V-U), (V-U), (8-7), (7-8)

4. End Element Error: (V-H), (H-V), (5-4), (4-5)

Figure 2.3: The twelve selected Morse code characters.

12

2.3 Experimental Design

The experiment was comprised of 8 subjects, 6 males and 2 females. All subjects were

between the ages of 20-30. 6 subjects reported they were right handed, 1 subject was left handed

and 1 subject was ambidextrous. None of the subjects had any prior experience with Morse code.

All subjects were healthy with no conditions that hindered their ability to sense stimulus in their

forearms. Each participant read and signed a consent form before the experiment that followed a

protocol approved by the University of South Florida’s Institutional Review Board. Subjects

were given a copy of a sheet with the 12 Morse code characters to study before the experiment.

Subjects had access to three documents throughout the entirety of the experiment:

1. An image of the four haptic setups and a brief description of how they worked.

2. A sheet with the 12 characters without their respective Morse code under them. This is to

let the subject remember all possible character entries in the experiment.

3. A gridded sheet of paper where a subject could write down his answers after receiving

Morse code. The MATLAB script is unable to have answers entered into it while sending

out instructions to the vibration motors, making this sheet necessary to have so subjects

don’t forget their answers.

The order in which the haptic setups were tested was randomized for each subject. All

haptic setups were balanced so that they all appeared in the first and second order twice. This

was done so that if a learning curve did exist within the experiment, where subjects were

becoming better at Morse code judgments over time that no setup would have a biased advantage

or disadvantage if it occurred earlier in the experiment than another setup. Subjects were

acoustically shielded with headphones playing rain drops to ensure that acoustic identification of

stimulus played no role in the experiment.

13

Subjects took a competency test before the initiation of data collection in the experiment

to ensure they knew all 12 of the Morse characters with 80% accuracy. Subjects then proceeded

to a practice test with a Farnsworth spacing of 3 seconds between characters, where the subject

can become accustomed to interpreting three Morse code characters in a row. Subjects wrote

their answers on a gridded sheet of paper to copy the Morse code characters as they perceived

them. Subjects were not allowed to write down the elements that represented Morse code (ex: _ _

_ - -) because this would allow them to focus on stimulus reception and identification, then have

indefinite time to do Morse code translation to English text (lexico-semantic analysis).

2.4 Description of MATLAB Testing Program

Users are prompted to enter several pieces of information in the beginning of the script:

their subject number so that data can be written into a unique excel file, haptic setup in which

they are using, enter ―y‖ for skipping to testing if they have already completed at least one haptic

setup and enter ―y‖ if they wish to take a verbal competency test to skip that section of the

program code. After user input, the MATLAB program then creates a random permutation of the

twelve characters twice and stores them into an array. As the program loops, an individual

character is retrieved from the array and has its corresponding Morse code pulled up, stored as a

five item array composed of the three strings ―dot‖, ―dash‖ or ―null‖. This character array is sent

to a function that powers selected pins in an Arduino Uno that actuate vibration motors with a

pattern that reflects the given haptic setup. The program uses a variable called ―Test‖ to progress

through several sections called ―phases‖ that have specific functions. For a more detailed

description of the MATLAB program, refer to the flowchart, seen in Figure 2.4.

14

2.4.1 Test Phases and their Role

1. Teaches Morse code individual characters to subjects. Participants receive a character and

its Morse code identification visually on the computer monitor and simultaneously

receive the Morse code through the haptic interface.

2. Competency test to make sure subjects successfully learned Morse code characters. If

subjects do not successfully identify individual Morse code characters 80% of the time,

they must retake the test. If it is apparent that a subject knows all the Morse code

characters, but is unable to successfully receive a score of 80% or higher on the

competency test, a verbal test can be taken in lieu. The verbal test makes sure that

perception mistakes don’t gate a subject from proceeding with the experiment. Subjects

were given prep talks after each unsuccessful attempt at the competency test and were

given helpful mnemonics to get them through this portion of the experiment faster, as

many subjects found this portion of the experiment aggravating.

3. Practice of three character strings. This is to familiarize the participants with character

spacing. The practice portion of the experiment was only done for the first tested setup to

due to time considerations concerning the duration of the experiment.

4. Three character string tests were results are recorded. This phase is repeated three times,

with character spacing decreasing by one second after phase completion. The character

spacing starts at three seconds, then shrinks to two seconds, then one second. If a subject

mistypes an answer into the computer, they can circle their answer on the gridded paper

and the answer was changed after the experiment to the intended one.

15

Figure 2.4: MATLAB Flowchart

16

Figure 2.4: Continued.

2.5 Description of Haptic Setups

The four haptic setups can be reviewed in Figure 2.5. A more detailed description of the

haptic setups and their intended comparisons are discussed below:

1. Traditional unimanual: Dots and dashes are represented on the left forearm. Dashes have

duration three times longer than dots.

2. Bimanual: Dots are represented on the left forearm and dashes are represented on the

right forearm. Dashes have duration three times longer than dots. For comparison, this is

the same as Traditional unimanual, but the dots and dashes are displayed on different

arms.

3. Short dashes Bimanual: Dots are represented on the left forearm and dashes are

represented on the right forearm. Dashes have equivalent duration time as a dot (one time

element). For comparison, this is the same as Bimanual (i.e., applied on different arms),

17

but the dots and dashes have the same length of time; only difference between them is the

placement.

4. Bimanual with motor intensity: Dots are represented on the left forearm and dashes are

represented on the right forearm. Dashes have duration three times longer than dots.

Successively similar elements within a character increases the amount of motors

triggered (up to a maximum of three motors). Motors were presented in an ―L‖ shape.

The motors were arranged in an ―L‖ shape, shown in Figure 2.6. This shape was chosen

after brief testing with other possible motor arrangements. It was believed that this

particular shape allowed for a more discernable change in motor intensity when the motor

shifts occurred entirely vertical or horizontal. This shape also takes advantage of the

design space of wearing an armband. For comparison, this is the same as Bimanual, but

repeated dots/dashes are presented in a different location.

Figure 2.5: Motor arrangement for haptic setup 4. Motors are actuated based on numeric

labeling smallest to largest.

18

Figure 2.6: The four haptic setups. Arrows indicate descriptions of comparisons to be made in

this study. This image was adapted.

2.5.1 Haptic Interfaces for Assisting in Enumeration Tasks

Two haptic setups have been designed to reduce error in the four categories of most

common errors in Morse code described by Highland. Highland’s error categories of dot and

dash estimation error can be described as an error in enumeration. Three vibration motors formed

into an L shaped pattern were designed to actuate sequentially when concurrently similar Morse

elements are represented. The illusion of motor intensity serves as an additional means of

assisting enumeration. Subtilizing for enumeration was experimented with, but did not make it

into the experimental design as distinguishing between simultaneous shifts in motor intensities

was too challenging to interpret.

19

2.5.2 Increasing Communication Speed with a Bimanual Setup

It is theorized that a bimanual setup will reduce the amount of stimulus labeling mistakes

by using stimulus location as the primary mean of discrimination rather than stimulus duration.

Using location as the stimulus identifier makes dash length redundant. If dashes can be the same

length as dots (one time unit), Morse code communication can be received at a faster rate.

PARIS represents the average English word and is composed of 50 time units. When dots are a

single time unit, PARIS is made up of 42 time units, making the average English word be

received 16% faster. Figure 2.7 further illustrates how a bimanual setup increases Morse code

communication expedience.

Figure 2.7: How a bimanual setup can reduce communication time. In this example, the string

―ABC‖ is expressed 26% faster.

20

CHAPTER 3: RESULTS

The results will indicate if any haptic setups are statistically significant from one another

by conducting a repeated measure ANOVA and post hoc test. It can also be determined if any of

the haptic setups have any significantly different change in errors associated with the Test

variable, that alters Farnsworth spacing, making Morse code judgment more challenging. It can

also be shown if any statistically significant difference between one the haptic setups for each of

the four categorized error types exist and if categorized errors appeared in patterns similar to

Highland’s study. The experimental design can also be review in its effectiveness of minimizing

the learning curve by conducting an ANOVA and post hoc test based on the order in which the

haptic setups were tested.

3.1 Setup Performance Overview

A two way ANOVA repeated measures analysis shows there is a statistically significant

difference between the Setups (F(3,21) = 5.062, p<0.05) and the Tests (F(2,14) = 40.650,

p<0.001) for mean error for all 8 subjects. A post hoc test was conducted among the setups,

shown in Figure 3.1, reveals a significant difference between Unimanual Setup 1 and Bimanual

Setup 2, where Bimanual Setup 2 showed 56.6% the number of errors that Unimanual Setup 1

had. Bimanual Short Setup 3 and Counting Setup 4 had no statistically significant difference

between any of the setups. It can be seen in Figure 3.2 that Test 1 has 49% the number of errors

than Test 3.

21

Figure 3.1: Post hoc test between all setups for mean error. Setups 1 and 2 are significantly

different from each other. Error bars represent the 95% confidence intervals.

Figure 3.2: Post hoc test between all tests for mean error. Error bars represent the 95%

confidence intervals.

22

3.2 Significance of Order

There is no statistically significant difference between for the order in which the setups

were taken. Figure 3.3 shows the post hoc test for all mean error based on order. Although there

is no statistical significance, there does appear to be a decrease between the first setup tested and

the remaining setups. However, because of the experimental design, the four setups were

balanced between which ones were tested first. Thus, order is not considered to be a major effect

in these experiments.

Figure 3.3: Post hoc tests of all mean error based on order. Error bars represent the 95%

confidence intervals.

3.3 Categorical Errors

There were no statistically significant findings between any of the haptic setups for

Highland’s categorized Morse code errors. Tables 1 and 2 can be referred to better understand

the relation of categorized error pairs with Highland’s study. Table 3.1 lists error occurrences for

each categorical error among the four setups along with Highland’s results. Table 3.2 lists the

23

amount of categorical error pairs among all possible error pairs for the current study and

Highland’s study.

Table 3.1: Percent contribution towards errors made of the four categorized errors within each

setup. Highland’s errors in his study are also shown.

Error Category Setup 1 Setup 2 Setup 3 Setup 4 Highland’s

Categorized Error 30.7% 42% 37.7% 36% 85.8%

 Dot Estimation 11.4% 19.2% 13.3% 12.9% 36.2%

 Dash Estimation 9.8% 12.0% 16.0% 12.9% 8.4%

 Internal Error 7.2% 10.2% 8.0% 8.9% 30.1%

 End Element Error 0.60% 0.40% 1.30% 11.10% 11.1%

Other Error 69.3% 58% 62.3% 64% 14.2%

Table 3.2: Frequency of error pairs to appear within all possible error pair combinations.

Error Category Current Study Highland’s Study

Dot Estimation 6 (4.5%) 11 (0.9%)

Dash Estimation 6 (4.5%) 18 (1.4%)

Internal Error 4 (3.0%) 26 (2.1%)

End-Element Error 4 (3.0%) 14 (1.11%)

Total Possible Error Pairs 132 (100%) 1,260 (100%)

Categorized character error pairs represented 15.15% (20 error pairs out of 132 total error

pairs available) and made up an average of 39.13% of all errors between the 4 haptic setups in

the experiment. In Highlands study, categorized errors represented 5.47% (69 error pairs out of

1260 total error pairs available) and made up 85.8% of all errors made. In this study, categorized

error pairs were 2.58 times (39.13%/15.15%) more likely to result in an error than non-

categorized pairs while in Highlands study, a categorized pair was 15.69 times (85.8%/5.47%)

more likely to result in an error relative to non-categorized pairs. Subjects in Highland’s study

were 6.07 times (15.69/2.58) more likely to make a categorical error than the subjects in this

study instead of a non-categorized error.

24

CHAPTER 4: DISCUSSION

Using stimulus location to discern dots and dashes on the left and right forearms for

Bimanual Setup 2 resulted in a statistically significant difference to haptic Unimanual Setup 1

that used stimulus duration as a stimulus identifier instead. Setup 2 showed 56.6% the number of

errors that Unimanual Setup 1 had. In other words, this research successfully proved that

representing Morse code with a bimanual setup reduces errors made by over half compared to

the traditional method of representing Morse code. For the clients who will be receiving Morse

code as an alternative communication method, a bimanual haptic setup will allow fewer errors in

receiving communication. This finding is also significant for complicated haptic interfaces with a

multiple, quickly successive feeds of tactile stimulus. Such interfaces that meet this criterion are

vibrotactile body interfaces for alerting blind individuals of obstacles. The need to design

complex full body haptic interfaces might arise as an extra element of immersion in conjunction

with a VR platform, or as a means of avoiding obstacles for persons who are visually impaired.

Tests 3 had a statistically significant higher amount of errors than Test 1. By reducing

judgment time by 2 seconds between Morse code characters, Test 1 had half (49%) the amount

of errors of Test 3. This finding is consistent with Naoki Iida’s finding that for quick successive

tactile stimulus judgments; the temporal distance between stimuli serves as a prominent factor in

judgment difficulty. A smaller temporal distance between Morse code characters (Farnsworth

spacing) would allow for faster communication reception by the clients. The transition from

English to Morse code can be viewed as a transition between using a 26 letter alphabet to a two

letter alphabet. It is likely that the transition to Morse code communication will be aggravating to

25

the clients. The clients will likely want to challenge themselves and reduce the Farnsworth

spacing, creating higher error in perception. This makes a bimanual haptic interface more

appealing to the clients, as it reduces error and allows the clients to reduce Farnsworth spacing

more so than a unimanual setup would.

The significance between Unimanual Setup 1 and Bimanual Setup 2 was found to not

have a statistically significant relation to Highland’s categorized errors. It is this authors

interpretation that the statistically significance between haptic setups 1 and 2 is due to a

judgment buffer effect that is present when stimulus duration is the identifier for dots and dashes,

as described in Figure 2.2. The judgment buffer exists since it is impossible to identify a dot or

dash until the full duration of a dot has been represented. If the stimulus ends, then it can be

concluded the stimulus was a dot. If the duration of stimulus continues, it can be classified as a

dash. This delay in stimulus identification could lead to more frequent overlapping of three tasks:

stimulus reception attention, stimulus identification and Morse code translation to English

characters (lexico-semantic analysis). The existence of a judgment buffer clouds any conclusion

of confirming that the statistically significant difference between Bimanual Setup 2 and

Unimanual Setup 1 validates Kinsbourne and Cook’s hemispherical interference theory. This

theory might be in play in this experiment, but the judgment buffer effect makes interference

scenarios occur in higher quantities for setup 1. To confirm that the significance between setup 1

and 2 could be due to hemispherical interference, a follow up experiment must be performed

when the judgment buffer does not exist. Such a study is described in the future works section of

this thesis.

26

4.1 Significance of Results

Subjects in Highland’s study were approximately 6 times more likely to make a

categorical error than a non-categorical error than the subjects in this study. Highland had to

discard a considerable amount of subject’s data from his study, as he required discarded code

checks that fell below 80% accuracy, since he deemed these code checks to be impairment of a

subject getting lost in the code, making random errors. The subjects in this study perceived

Morse code characters 60% of the time among all haptic setups. Subjects had a 71% accuracy

using Bimanual Setup 2, the best performing interface. If Highland believes a below 80%

accuracy is determinate that a subject has gotten lost in the code and is making random guesses,

then by that benchmark, the average subject of this study was making a majority of random

errors due to not making judgments about Morse code pattern fast enough. This distinction is

important to note, as it means the root cause of the statistically significant difference between

Bimanual Setup 2 and Unimanual Setup 1 is due to a higher probability of judgment overlap

between the three processed tasks of stimulus reception, stimulus identification and lexico-

semantic analysis. In other words, interference of tasks seems to occur more often in setup 1 than

setup 2.

The larger percentage of random error present in this study in comparison to Highlands is

likely largely due to this study using novices with no prior Morse code experience. A novice is

more likely to make a random error as they will find themselves getting lost in the code more

often than their more experienced counterparts who instead make more nuanced mistakes

described with Highland’s categorized errors. Having a small pool of Morse code characters

could have also aided in a decrease in characterized errors, as the categorized errors are

27

represented 9.68% more than in Highland’s study, where categorized errors occur far less,

allowing a subject to be caught off guard to a higher degree.

Since the significant reduction of errors of the bimanual setup relative to the unimanual

setup does not seem to follow any particular pattern, the root cause of such a result might lie

within the judgment buffer effect shown in Figure 2.2, where judgment of stimulus must be

delayed after its presence when stimulus duration dictates what is considered a dot or dash. This

judgment buffer would not occur for a bimanual setup as stimulus location discrimination

instantaneously provides all necessary information for stimulus labeling. With stimulus detection

and judgment tasks being performed simultaneously more often for the unimanual setup, the

circumstance of interference is present more often.

4.2 Difficulty Scaling of Tests

The post hoc of all error data showed a statistically significant difference in error between

test 1 and test 3. Reducing the pause between Morse code characters (Farnsworth spacing) by

two seconds increased error occurrence by 20.3%. However, test 2 was statistically insignificant

compared to setups 1 and 3. Therefore, the reduction interval to Farnsworth spacing (set at 1

second for this study) should be increased. To better understand the how much Farnsworth

spacing can be present in the study without compromising perception difficulty, we can

extrapolate errors made in the three test difficulties (assuming spacing and difficulty have a

linear relationship) and determine when character spacing will result in only 20% error (the error

percent that was allowable for the competency test, where subjects had indefinite time to judge a

single Morse character). The linear slope between Tests was calculated in Equation 1 to be

10.15%. This means for every second the Farnsworth spacing increases, error decreases by

approximately 10%. Since subjects struggled to achieve 80% success (20% error) in the

28

competency test and had indefinite time to make a judgment, it can be concluded that having a

Farnsworth spacing that allows 20% error is equivalent to having indefinite time (character

spacing becomes irrelevant in Morse code judgment). Therefore, since Test 1 shows to have 30%

error with 3 seconds of Farnsworth spacing, the Farnsworth spacing should not exceed 4

seconds, as this is when error is extrapolated to be at 20%.

() ()

() ()

4.3 Minimizing the Effect of the Learning Curve

Learning between the four experimental setups was minimized by initiating a

competency before experimental data was collected, along with balancing the four setups so that

each setup appeared in the first and second order twice though the experiment. The order in

which the setups are tested has minimal effect on the results of the study. It was important to

make sure the study measures perception between the haptic setups and not learning the 12

Morse characters as a subject progresses through the experiment. The competency test serves to

ensure all subjects undergo the experiment with equal knowledge of the Morse code characters

being tested so they have less reason to learn when data is collected. The post hoc test shows that

there was no significant difference between the orders in which setups were taken. There is a

fairly large, but not statistically significant, difference in the first haptic setup taken, suggesting

that a subject is getting better at Morse code perception for the first tested haptic setup (presence

of learning). The 80% passing rate of the competency test typically required a subject to undergo

multiple attempts to pass, with two instances of subjects who were unable to ever pass the test

and had to take a verbal test instead. The passing rate could be made slightly lower so a verbal

test is not required, as many subjects seemed to have made frequent categorized errors instead of

random errors, suggesting they knew the character meaning but struggled with perception.

29

4.4 Other Applications

4.4.1 Virtual Reality

Virtual reality displays offer the ability to train for a situation via simulation. This can

serve as a risk free, convenient method to prepare for tasks like surgery. In such a simulation,

haptic feedback is important to convey the amount of pressure and its direction from a tooltip

being applied to a patient’s body. It may be more intuitive to display both direction and force

feedback onto a one handed haptic interface, but such an interface might lead to interference

between discerning the two stimuli. In this case, a bimanual setup might yield more clarity to

separate the stimulus of force feedback and direction.

4.4.2 Obstacle Avoidance for Persons who are Visually Impaired

Alerts for object collision are provided to a person who is visually impaired via haptic

interface. Information of location and proximity of obstacles are important to keep track of. It

might be advantageous to use a bimanual haptic interface to separate these two streams of

stimuli. An example would be to have one interface that vibrates a cane handle in the direction of

the obstacle and another interface on the other hand that intensifies vibration as proximity is

reduced.

4.5 Future Work

4.5.1 Determine if Hemispheric Interference Occurs For a Morse Code Task

The presence of a judgment buffer for the unimanual setup makes it very difficult to

validate Kinsbourne and Cook’s theory of separate hemispheres having a finite resource pool

with these experiments results, as task interference occurs in higher quantities for the unimanual

setup in relation to the bimanual setup. A better measure of interference would be to compare a

unimanual setup attached to the left arm with that of a unimanual setup on the right arm. The

30

right arm setup would have all information processed in the right hemisphere, while the left arm

setup processes stimulus in the right hemisphere and performs lexico-semantic analysis in the

left hemisphere.

4.5.2 Determine if a Judgment Buffer Occurs For a Morse Code Task

A follow up experiment is required confirm that the statistically significant difference

between Bimanual Setup 1 and Unimanual Setup 2 is due to the judgment buffer effect and not

hemispheric interference. The experimental design for such an experiment will compare two

haptic setups: one setup being the same as setup 1 for this study, where stimulus is identified

with stimulus duration. The other setup will also be unimanual, but use stimulus location to

distinguish dots and dashes, where dots will be represented on the forearm and dashes will be

represented on the bicep. If it is found that setup 1 is statistically significantly more likely to

make an error, it can be concluded that a judgment buffer does indeed exist.

4.5.3 Design a More Intuitive Haptic Setup for Counting

It was surprising that using three motors to increase motor intensity had resulted in a

higher mean error compared to setup two, its most similar counterpart. It was expected that

configuring three vibration motors in a geometric shape would assist in enumeration tasks. This

setup is similar to how subjects in Verlaers’s study were able to improve in enumeration

judgment tasks when performing braille finger scanning when the braille was organized in three

element geometric shapes.

However, comments of subjects after testing noted that the haptic display of setup 4 was

confusing. This could either be due to shifts in motor intensity being too much information to

process, or it could mean that the ―L‖ shaped motor arrangement was unintuitive in conveying

the presence of successively similar Morse elements. It is proposed that a radial growth of

31

vibration would be more intuitive than a growth in an ―L‖ shape. Figure 4.1 shows the proposed

design of a radial haptic interface.

Figure 4.1: Proposed motor arrangement design to facilitate counting with motor intensity.

32

CHAPTER 5: CONCLUSION

This study showed that using stimulus that is identified with bimanually opposite

locations results in statistically significantly lower errors in Morse code perception than using

stimulus duration to identify stimuli in a unimanual condition. The error results from the subjects

did not follow any of the common Morse code error categories from Highland, meaning that

error mistakes followed no specific error pair patterns and are therefore random. Random

mistakes are likely due to subjects getting lost in Morse code, which occurs when lexico-

semantic analysis is not successfully judged fast enough and an overlapping of tasks takes place

when new stimulus is introduced (interference).

It is suspected this interference can be either from hemispheric interference theory, where

tasks are capable of being processed easier when overlapping due to information being

synthesized in separate hemispheres, or due to a judgment buffer effect, where the inherent delay

in stimulus identification when using stimulus duration as a stimuli identifier results in more

interference. To be certain if the statistically significant difference between setups 1 and 2 is due

to either hemispheric interference or a judgment buffer, their needs to be a follow up study that

test haptic setups that separate these two phenomenon.

The conclusion of a bimanual setup resulting in statistically significantly fewer errors in

Morse code directly benefits the individuals in which this research is dedicated towards. A

bimanual haptic interface that results in 56.6% of the amount of errors of the traditional dot/dash

temporal discrimination interface will allow for a far less frustrating transition into adapting to

33

Morse code as a new means of communication in the short term and in the long term, allow for

faster communication without compromise of lower Morse code perception accuracy.

34

REFERENCES

Allan, M. D. (1958). A Pattern Recognition method of Learning Morse code. British Journal of

Psychology, 59-64.

Craig, J. C. (1985). Attending to two fingers: Two hands are better than one. Perception &

Psychophysics, 496-511.

Friedman, A., & Polson, M. C. (1981). Hemispheres as independent resource system: Limited-

capacity processing and cerebral specialization. Journal of Experimental Psychology,

1031-1058.

Jean-Francois Charron, I. C. (1996). Intermanual Transfer of Somaesthetic Information: A Two-

Point Discrimination Experiment. Neuropsycholoyia, 873-877.

John L. Bradshaw, M. E. (1998). An Intermanual Advantage for Tactual Matching. Monash

University, 763-770.

K. Verlaers, J. W. (2015). The Effect of Perceptual Grouping On Haptic Numerosity Perception.

Atten Percept Psychophys, 353–367.

Lara Schlaffke, N. N.-W. (2015). From Perceptual to Lexico-Semantic Analysis—Cortical

Plasticity Enabling New Levels of Processing. Human Brain Mapping, 4512–4528.

Marcel Kinsbourne, J. C. (1971). Generalized and Lateralized Effects Of Concurrent

Verbalization On A Unimanual Skill. Quarterly Journal of Experimental Psychology,

341-345.

Naoki Iida, S. K. (2016). Comparison of Tactile Temporal Numerosity Unimanual and Bimanual

Presentations. Perception, 99–113.

Richard W. Highland, E. A. (1958). An Empirical Classification of Error Patterns in Receiving

Morse Code. Journal of Applied Psychology, 112-119.

35

APPENDIX A: ERROR PAIR DATA

Table A.1: Error pair data per setup for all subjects.

36

APPENDIX B: DOCUMENTS PRESENT IN EXPERIMENT

Figure B.1: Overview of the four haptic setups. This sheet of paper was available at all times

throughout the experiment.

37

Figure B.2: Sheet of paper used to record answers for three character string tests. This sheet of

paper was available at all times throughout the experiment.

Problem First Second Third

1

2

3

4

5

6

7

8

Problem First Second Third Problem First Second Third Problem First Second Third

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

Subject #

Vibration setup #

Practice

Test 1 Test 2 Test 3

Gender

Lef/right handed

M / F

 Left / Right

Morse Code experience
Yes / No

38

Figure B.3: Sheet of paper showing the 12 possible characters. This sheet of paper was available

at all times throughout the experiment.

39

Figure B.4: Sheet of paper with the 12 Morse code characters for studying purposes. This sheet

of paper was provided before the experiment. This sheet of paper was not allowed to be viewed

once testing began.

40

APPENDIX C: MATLAB CODE

C.1 Main Script

C.1.1 Contents
 defining variables

 allocate sheet for data storage on excel

 workaround code so that MATLAB writes into excel much faster

 instructions for the several portion of the experiment

 Element time durations calculated for Setup 1 (Traditional)

 recalculate element and letter spacing when dash duration equals dot duration for setup 5 (OLD)

 recalculate element and letter spacing for bimanual presentation (setups 6 + 7) (OLD)

 Morse code identifiers

 Identifying letters from answer key permutation

 Identifying letters from user input

 Sending Morse code to user

 creating display interface for test 1

 creating display interface for test 2

 plotting Test 2

 creating display interface for test 3

 creating display interface for test 4,5,6,7

 plotting Test 4,5,6,7

 write data to excel sheet after test completion

clc

clear all

C.1.2 Defining Variables

n = 12; % the amount of letters

Trail_amount = 7; % how many trails are there

Cycle_amount = 2; % how many cycles for each trail

increase = 0; % variable that increases wpm based on what test level is active

problem =0; % variable that counts what problem # your on

correct = 0; % variable that counts correct letters identified per test

Total_letters = n*Cycle_amount; % how many letters there are in a test

c1 = 0; % variable that changes display for test 2 if correct

cell_number = 1; % variable that increaeses cell position in excel

cell_id = 0; % variable that turns cell_number into a string

A_Uno = arduino('com4','uno'); % identifies Arduino UNO microcontroller

Test = 1; % initialize testing phase count

Cycle = 1;

skip = 0;

pass = 1;

C.1.3 Allocate Excel Sheet for Data Storage

flag = 'n'; % until information is confirmed correct, rerun prompt

while flag == 'n';

prompt = 'Enter your participant number. Ex: 1,2,3, exc.';

41

participant = input(prompt);

prompt = 'Enter your Experimental Type. Ex: 1,2,3, exc.';

vib_setup = input(prompt);

prompt = 'Confirm if this information is correct. Type "y" for yes or "n" for no';

flag = input(prompt,'s');

clc

end

C.1.4 Workaround Code so that MATLAB Writes Into Excel Much Faster

participant_id = num2str(participant);

vib_setup_id = num2str(vib_setup);

filename = strcat('Subject',participant_id);

File = strcat('C:\Users\mpw\Desktop\Morse_exp\',filename,'.csv');

C.1.5 Instructions for Segments of Experiment

while Test <= Trail_amount;

 if Test == 1

 prompt = 'Have you completed this experiment yet? Type "y" for yes or "n" for no';

 skip = input(prompt,'s');

 clc

 if strcmp(skip,'y') == 1

 Test = 5;

 end

 end

 % take verbal test in lieu of competancy test incase perception gates

 %

 if Test == 1

 prompt = 'Do you want to take the verbal test? Type "y" for yes or "n" for no';

 skip = input(prompt,'s');

 clc

 if strcmp(skip,'y') == 1

 Test = 4;

 end

 end

 % skips old code that teaches 3 charters in a row.

 if Test == 3

 Test = 4;

 end

if Test == 1

 Part1 = imread();

 subplot(1,1,1), imshow(Part1);

 disp('Instructions: in Phase 1, you will learn the Morse code for 12')

 disp('letters/numbers (D, H, J, S, U, V, W, 1, 4, 5, 7, 8). You will be shown a character')

 disp('with its respective Morse code underneath it. The device attached to your')

 disp('arm(s) will then alert you via a vibration or a pressing sensation of')

 disp('whether a Morse code element is a dot or dash.')

 disp(' ')

 disp(' ')

 prompt = 'Press “Enter” to begin';

 str = input(prompt,'s');

 clc

end

42

if Test == 2

 Part1 = imread();

 subplot(1,1,1), imshow(Part1);

 disp('Instructions: in Phase 2, you will be practicing your knowledge')

 disp('on the 12 characters you just learned. The device on your arm(s)')

 disp('will relay to you Morse code elements. You will then type the')

 disp('character you think was relayed to you. After you have done this,')

 disp('you can see if your answer was correct or not. On the top of the')

 disp('display, you can see how many letters you')

 disp('got correct and what problem you are on out of the total problems')

 disp('there are for the set. You need to recieve a score of 80% or higher to')

 disp('proceed to the next portion of the experiment')

 disp(' ')

 disp(' ')

 prompt = 'Press "Enter" to continue';

 str = input(prompt,'s');

 clc

end

if Test == 3

 Part1 = imread();

 subplot(1,1,1), imshow(Part1);

 disp('Instructions: In Phase 3, you will be learning how to understand')

 disp('Morse code when characters are sent in series. There will be a pause')

 disp('from the device you are wearing to indicate when a letter has ended')

 disp('and a new one begins.')

 disp(' ')

 disp(' ')

 prompt = 'Press "Enter" to continue';

 str = input(prompt,'s');

 clc

end

if Test == 4

 Part1 = imread();

 subplot(1,1,1), imshow(Part1);

 disp('Instructions: In Phase 4, you will be practicing your ability to')

 disp('identify 3 letters in series. After all 3 letters have been alerted')

 disp('to you, you can then enter your answers. For the remainder of the')

 disp('problem sets, you will be given these types of problems with 3')

 disp('characters in series. This is a practice set; your results will')

 disp('not be recorded.')

 disp(' ')

 disp(' ')

 prompt = 'Press "Enter" to continue';

 str = input(prompt,'s');

 clc

end

if Test == 5

 Part1 = imread();

 subplot(1,1,1), imshow(Part1);

 disp('In Phase 5, you will be tested on your ability to identify 3 characters')

 disp('in series. After all 3 letters have been alerted to you, you can')

 disp('then enter your answers. Answers are to be entered one at a time')

 disp('This is the first out of three test sets. Your results will be recorded.')

 disp(' ')

 disp(' ')

 prompt = 'Press "Enter" to continue';

43

 str = input(prompt,'s');

 clc

end

if Test == 6

 Part1 = imread();

 subplot(1,1,1), imshow(Part1);

 disp('Instructions: In Phase 6, you will be tested on your ability to')

 disp('identify 3 characters in series. After all 3 characters have been alerted')

 disp('to you, you can then enter your answers. Characters will now be alerted')

 disp('to you at a slightly faster rate.')

 disp(' ')

 disp(' ')

 prompt = 'Press "Enter" to continue';

 str = input(prompt,'s');

 clc

end

if Test == 7

 Part1 = imread();

 subplot(1,1,1), imshow(Part1);

 disp('Instructions: In Phase 7, you will be tested on your ability to')

 disp('identify 3 characters in series. After all 3 characters have been alerted')

 disp('to you, you can then enter your answers. The pace of the characters')

 disp('has been further increased. This is the final phase')

 disp('of the experiment.')

 disp(' ')

 disp(' ')

 prompt = 'Press "Enter" to continue';

 str = input(prompt,'s');

 clc

end

C.1.6 Element Time Durations Calculated for Setup 1 (Traditional)

wpm =15 ;

PARIS = (50/60); %50 elements/sec for the word "paris"

element_time = 1/(wpm*(PARIS)); %seconds/element

dot = element_time;

dash = 3*element_time;

null = 0; % null variable to allow formation of matrix

element_gap = element_time;

letter_gap = 3 - increase;

C.1.7 Recalculate Element and Letter Spacing for Setup 5 (OLD)

% Unused code

if vib_setup == 5

n_dots = 31;

n_dashes = 17;

n_spaces = 37;

n_letter_spaces = 8;

n_sub_spaces = 25;

total_space_time = (n_spaces*element_gap)+ n_letter_spaces*letter_gap;

time_val_trad = (n_dots*dot)+(n_dashes*dash)+ total_space_time;

total_space_time = n_sub_spaces*element_gap + n_letter_spaces*letter_gap;

total_ele_time = (n_dots*dot) + (n_dashes*dot);

time_val_sub = total_ele_time + total_space_time;

excess_time = time_val_trad - time_val_sub;

new_total_ele_time = total_ele_time + excess_time;

44

syms dot

eqn = (n_dots*dot) + (n_dashes*dot) == new_total_ele_time;

dot = double(solve(eqn,dot));

time_val_new = (n_dots*dot)+(n_dashes*dot)+ total_space_time;

end

C.1.8 Recalculate Element and Letter Spacing for Setups 6 and 7 (OLD)

if vib_setup == 7 || vib_setup == 6

n_dots = 31;

n_dashes = 17;

n_spaces = 37;

n_letter_spaces = 8;

% find how much time it takes to express the 12 letters in the letter set

% in a string. Then, set dash duration to dot duration and resize element

% and letter time gaps so that it takes the same time.

total_space_time = (n_spaces*element_gap)+n_letter_spaces*letter_gap;

time_val_trad = (n_dots*dot)+(n_dashes*dash)+ total_space_time;

time_val_bi = (n_dots*dot)+(n_dashes*dot)+ total_space_time;

excess_time = time_val_trad - time_val_bi;

new_total_space_time = total_space_time + excess_time;

syms new_ele_gap

eqn = n_spaces*element_gap + n_letter_spaces*9*new_ele_gap == new_total_space_time;

element_gapp = double(solve(eqn,new_ele_gap));

letter_gap = (9*element_gapp);

total_space_time = (n_spaces*element_gap)+n_letter_spaces*letter_gap;

% code that validates if new element gap timing results in identical test

% duration as traditional method.

time_val_new = (n_dots*dot)+(n_dashes*dot)+ total_space_time;

end

C.1.9 Morse Code Identifiers

% matlab likes all the strings to be the same character leangth, hence:

% "dott" is spelled like this and not like "dot".

MorseD = {'dash'; 'dott'; 'dott'; 'null'; 'null'};

MorseH = {'dott'; 'dott'; 'dott'; 'dott'; 'null'};

MorseJ = {'dott'; 'dash'; 'dash'; 'dash'; 'null'};

MorseS = {'dott'; 'dott'; 'dott'; 'null'; 'null'};

MorseU = {'dott'; 'dott'; 'dash'; 'null'; 'null'};

MorseV = {'dott'; 'dott'; 'dott'; 'dash'; 'null'};

MorseW = {'dott'; 'dash'; 'dash'; 'null'; 'null'};

Morse1 = {'dott'; 'dash'; 'dash'; 'dash'; 'dash'};

Morse4 = {'dott'; 'dott'; 'dott'; 'dott'; 'dash'};

Morse5 = {'dott'; 'dott'; 'dott'; 'dott'; 'dott'};

Morse7 = {'dash'; 'dash'; 'dott'; 'dott'; 'dott'};

Morse8 = {'dash'; 'dash'; 'dash'; 'dott'; 'dott'};

C.1.10 Identifying Letters from Answer Key Permutation

 for Cycle = 1:1:Cycle_amount;

p=randperm(n); % permuntating 12 integers to represent answers per cycle

L_answer = cell(1,n);

%M_answer = cell(n,3);

45

for i = 1:1:n

if p(i) == 1

 L_answer(i) = {};

 M_answer{i} = MorseD;

 correct_letter{i} = 'd';

end

if p(i) == 2

 L_answer(i) = {};

 M_answer{i} = MorseH;

 correct_letter{i} = 'h';

end

if p(i) == 3

 L_answer(i) = {};

 M_answer{i} = MorseJ;

 correct_letter{i} = 'j';

end

if p(i) == 4

 L_answer(i) = {};

 M_answer{i} = MorseS;

 correct_letter{i} = 's';

end

if p(i) == 5

 L_answer(i) = {};

 M_answer{i} = MorseU;

 correct_letter{i} = 'u';

end

if p(i) == 6

 L_answer(i) = {};

 M_answer{i} = MorseV;

 correct_letter{i} = 'v';

end

if p(i) == 7

 L_answer(i) = {};

 M_answer{i} = MorseW;

 correct_letter{i} = 'w';

end

if p(i) == 8

 L_answer(i) = {};

 M_answer{i} = Morse1;

 correct_letter{i} = '1';

end

if p(i) == 9

 L_answer(i) = {};

 M_answer{i} = Morse4;

 correct_letter{i} = '4';

end

if p(i) == 10

 L_answer(i) = {};

 M_answer{i} = Morse5;

 correct_letter{i} = '5';

end

if p(i) == 11

 L_answer(i) = {};

 M_answer{i} = Morse7;

 correct_letter{i} = '7';

end

if p(i) == 12

 L_answer(i) = {};

 M_answer{i} = Morse8;

46

 correct_letter{i} = '8';

end

end

%end

C.1.11 Identifying User Input Letters

% preallocating array sizes

L_user = cell(1,n);

i = 0;

while i < n

val = 0; % variable that counts letters

flag = 0; % variable that identifies if an incorrect letter is pressed

% how many letters sequenced

if Test <=2

 Letter_amount = 1;

else

 Letter_amount = 3;

end

tic;

while val < Letter_amount

i = i + 1;

% dont ask for user input for test 1 and test 3

if Test == 1 || Test == 3

break

end

C.1.12 Sending Morse Code to User

if Test == 2

temp = M_answer{i};

if pass == 1; % dont activate motors again if invalid letter choice was given.

 %pause(letter_gap)

Trad_morse(A_Uno, element_time, element_gap, temp, vib_setup);

end

else

if pass == 1; % dont activate motors again if invalid letter choice was given.

 j = 0;

while j < 3

 pause(letter_gap)

temp = M_answer{i + j};

j = j + 1;

Trad_morse(A_Uno, element_time, element_gap, temp, vib_setup);

end

end

end

pass = 0;

 prompt = 'What letter did you feel?';

str = input(prompt,'s'); %storing input as string

if str == 'd'

 L_user(i) = {};

 val = val + 1;

 user_letter{i} = 'd';

 flag = 1;

end

47

if str == 'h'

 L_user(i) = {};

 val = val + 1;

 user_letter{i} = 'h';

 flag = 1;

end

if str == 'j'

 L_user(i) = {};

 val = val + 1;

 user_letter{i} = 'j';

 flag = 1;

end

if str == 's'

 L_user(i) = {};

 val = val + 1;

 user_letter{i} = 's';

 flag = 1;

end

if str == 'u'

 L_user(i) = {};

 val = val + 1;

 user_letter{i} = 'u';

 flag = 1;

end

if str == 'v'

 L_user(i) = {};

 val = val + 1;

 user_letter{i} = 'v';

 flag = 1;

end

if str == 'w'

 L_user(i) = {};

 val = val + 1;

 user_letter{i} = 'w';

 flag = 1;

end

if str == '1'

 L_user(i) = {};

 val = val + 1;

 user_letter{i} = '1';

 flag = 1;

end

if str == '4'

 L_user(i) = {};

 val = val + 1;

 user_letter{i} = '4';

 flag = 1;

end

if str == '5'

 L_user(i) = {};

 val = val + 1;

 user_letter{i} = '5';

 flag = 1;

end

if str == '7'

 L_user(i) = {};

 val = val + 1;

 user_letter{i} = '7';

 flag = 1;

end

48

if str == '8'

 L_user(i) = {};

 val = val + 1;

 user_letter{i} = '8';

 flag = 1;

end

response_time{i} = toc;

current_cycle{i} = Cycle;

if flag == 0

disp('the letter you entered is invalid');

disp('please enter a valid letter');

i = i - 1;

end

flag = 0;

end

problem = problem + 1;

pass = 1;

C.1.13 Creating Display Interface for Test 1

if Test == 1

str2 = sprintf('%g more sets to go',Total_letters - problem);

[answer] = imread(L_answer{i});

subplot(1,1,1), imshow(answer);

title(str2)

%pause(2) %lets user read picture before stimulus is sent.

% sent morse code stimulus

temp = M_answer{i};

Trad_morse(A_Uno, element_time, element_gap, temp, vib_setup)

%pause(0.5)

prompt = 'Press "Enter" to continue';

str = input(prompt,'s');

clc

end

C.1.14 Creating Display Interface for Test 2

if Test == 2

% evaluating correctness of letters

if L_user{i} == L_answer{i}

[correctness] = imread();

correct = correct + 1;

c1 = c1 + 1;

c_data{i} = 1;

else

[correctness] = imread();

c_data{i} = 0;

end

[answer] = imread(L_answer{i});

[user_input] = imread(L_user{i});

49

C.1.15 Plotting Test 2

str1 = sprintf('%g Correct Letters ',correct);

str2 = sprintf('%g more to go',Total_letters - problem);

%str3 = sprintf('Response time %g s',round(response_time,2,'significant'));

str4 = 'You Chose';

str5 = 'Correct Answer';

str6 = sprintf('%s %s',str1,str2);

str7 = '___

if c1 == 0

subplot(1,3,1), imshow(user_input)

title (str4)

subplot(1,3,2), imshow(correctness)

%title (str2)

subplot(1,3,3), imshow(answer)

title (str5)

else

subplot(1,2,1), imshow(user_input)

title (str4)

subplot(1,2,2), imshow(correctness)

%title (str2)

end

subtitle(str6);

subtitle(str7);

c1 = 0;

warning off

 prompt = 'Press "Enter" to continue';

 str = input(prompt,'s');

warning on

 clc

 clf % clear figure so subject is not distracted

 %pause(1) % allow subject to ready himself

end

C.1.16 Creating Display Interface for Test 3

if Test == 3

i = i + 2;

str2 = sprintf('%g more sets to go',(Total_letters - problem*3)/3);

[answer1] = imread(L_answer{i-2});

[answer2] = imread(L_answer{i-1});

[answer3] = imread(L_answer{i});

subplot(1,3,1), imshow(answer1)

subplot(1,3,2), imshow(answer2)

title(str2)

subplot(1,3,3), imshow(answer3)

%pause(2) %lets user read picture before stimulus is sent.

j = 2;

while j >= 0

 pause(letter_gap)

temp = M_answer{i - j};

50

j = j - 1;

Trad_morse(A_Uno, element_time, element_gap, temp, vib_setup);

end

%pause(0.5)

prompt = 'Press "Enter" to continue';

str = input(prompt,'s');

clc

end

C.1.17 Creating Display Interface for Test 4,5,6,7

if Test >= 4

% evaluating correctness of letters

if L_user{i-2} == L_answer{i-2}

[correctness1] = imread();

correct = correct + 1;

c1 = c1 + 1;

c_data{i-2} = 1;

else

[correctness1] = imread();

c_data{i-2} = 0;

end

% ___

if L_user{i-1} == L_answer{i-1}

[correctness2] = imread();

correct = correct + 1;

c1 = c1 + 1;

c_data{i-1} = 1;

else

[correctness2] = imread();

c_data{i-1} = 0;

end

%___

if L_user{i} == L_answer{i}

[correctness3] = imread();

correct = correct + 1;

c1 = c1 + 1;

c_data{i} = 1;

else

[correctness3] = imread();

c_data{i} = 0;

end

[answer1] = imread(L_answer{i-2});

[answer2] = imread(L_answer{i-1});

[answer3] = imread(L_answer{i});

[user_input1] = imread(L_user{i-2});

[user_input2] = imread(L_user{i-1});

[user_input3] = imread(L_user{i});

C.1.18 Plotting Test 4,5,6,7

str1 = sprintf('%g Correct Letters',correct);

str2 = sprintf('%g more sets to go',(Total_letters - problem*3)/3);

%str3 = sprintf('Response time %g s',round(response_time,2,'significant'));

str4 = 'You Chose';

str5 = 'Correct Answer';

str6 = sprintf('%s %s',str1,str2);

51

str7 =

'___

if c1 < 3

subplot(3,3,1), imshow(user_input1)

subplot(3,3,2), imshow(user_input2)

subplot(3,3,3), imshow(user_input3)

subplot(3,3,4), imshow(correctness1)

subplot(3,3,5), imshow(correctness2)

subplot(3,3,6), imshow(correctness3)

subplot(3,3,7), imshow(answer1)

subplot(3,3,8), imshow(answer2)

subplot(3,3,9), imshow(answer3)

title(subplot(3,3,1),{str1},'FontSize', 14, 'FontWeight', 'bold');

title(subplot(3,3,2),{str7},'FontSize', 14, 'FontWeight', 'bold');

title(subplot(3,3,3),{str2},'FontSize', 14, 'FontWeight', 'bold');

title(subplot(3,3,5),{str4;str7})

title(subplot(3,3,8),{str7;str5})

else

subplot(2,3,1), imshow(user_input1)

subplot(2,3,2), imshow(user_input2)

subplot(2,3,3), imshow(user_input3)

subplot(2,3,4), imshow(correctness1)

subplot(2,3,5), imshow(correctness2)

subplot(2,3,6), imshow(correctness3)

title(subplot(2,3,1),{str1;' '})

title(subplot(2,3,2),{' ';str7;' '})

title(subplot(2,3,3),{str2;' '})

title(subplot(2,3,5),{str4;str7})

end

c1 = 0;

warning off

 prompt = 'Press "Enter" to continue';

 str = input(prompt,'s');

warning on

 clc

 clf % clear figure so subject is not distracted

 pause(1) % allow subject to ready himself

end

end

% proceed to next test after amount of cycles have been satisfied

if Test >= 5;

 % opening up Excel

%Excel = actxserver('Excel.Application');

%if ~exist(File,'file')

% ExcelWorkbook = Excel.workbooks.Add;

% ExcelWorkbook.Sheets.Add;

% ExcelWorkbook.SaveAs(File,1);

% ExcelWorkbook.Close(false);

%end

%invoke(Excel.Workbooks,'Open',File);

for i = 1:1:n

52

user_value = {'User Letter';user_letter{i}};

answer_value = {'Answer Letter';correct_letter};

letters_correct = {'Letters Correct';c_data};

Reaction_time = {'Reaction Time';response_time};

cell_number = cell_number + 1;

cell_id = num2str(cell_number);

% create string to be used as cell location for each column

col1 = strcat('A',cell_id);

col2 = strcat('B',cell_id);

col3 = strcat('C',cell_id);

col4 = strcat('D',cell_id);

col5 = strcat('E',cell_id);

col6 = strcat('F',cell_id);

%Recording = imread('Letters/Recording_Data.jpg');

%imshow(Recording)

% write data to respected column

sheetname = strcat('Setup',vib_setup_id);

warning off

%xlswrite(File,user_letter{i},sheetname,col1);

%xlswrite(File,correct_letter{i},sheetname,col2);

%xlswrite(File,c_data{i},sheetname,col3);

%xlswrite(File,response_time{i},sheetname,col4);

%xlswrite(File,current_cycle{i},sheetname,col5);

%xlswrite(File,Test,sheetname,col6);

%response_time{i}

dlmwrite(File,[user_letter{i} correct_letter{i} num2str(c_data{i}) num2str(current_cycle{i}) num2str(Test) vib_setup_id],'-

append','delimiter',',')

warning on

n;

%sprintf('%g % of the data has been recorded',ceil(i/n*100))

i;

%if i == 12 % pause for excel to close

%pause(2)

%end

end

clc

%prompt = 'Press "Enter" to Continue.';

%participant = input(prompt);

%clc

%invoke(Excel.ActiveWorkbook,'Save');

%Excel.Quit

%Excel.delete

%clear Excel

end

flag1 = 0;

if Cycle == Cycle_amount

 if Test == 2

 score = correct/Total_letters;

 if score >= 0.8 % particpant must recieve a score of 80% or higher

 Test = Test + 1;

 else

 fprintf('You recieved a score of %f percent. You require a',double(score*100))

 disp('score of 80% or greater to proceed to the next phase.')

 disp('You must re-take the practice phase')

53

 prompt = 'Press "Enter" to continue';

 str = input(prompt,'s');

 clc

 end

 else

 Test = Test + 1;

 end

 Cycle = 0;

 problem = 0;

 correct = 0;

 if Test >= 5

 increase = increase + 1

 end

end

 Cycle = Cycle + 1; % go to next cycle and permutate new letters

%end

C.1.19 Write Data to Excel Sheet after Test Completion

% skip writing data if on learning tests 1 or 3.

 end

end

Done = imread();

imshow(Done)

C.2 Setup Function

C.2.1 Contents
 vibration motor setup

 Vibration setup 1: Traditional Morse code

 Vibration setup 2: left/right presentation with same dash duration

 Vibration setup 3: left/right presentation with dot = dash

 Vibration setup 4, counting with three motors

 Vibration setup 5: bilateral subitizing (removed from experiment)

function Trad_morse(A_Uno, element_time, element_gap, temp, vib_setup)

C.2.2 Vibration Setup 1: Traditional Morse Code

if vib_setup == 1;

for j = 1:1:5

duration = temp{j};

if strcmp(duration,'dott') == 1

 duration = element_time;

 writeDigitalPin(A_Uno, 11, 1); % activate pin

 pause(duration) % stay active for set duartion

 writeDigitalPin(A_Uno, 11, 0); % deactivate pin

 pause(element_gap)

end

if strcmp(duration,'dash') == 1

 duration = 3*element_time;

 writeDigitalPin(A_Uno, 11, 1); % activate pin

 pause(duration) % stay active for set duartion

 writeDigitalPin(A_Uno, 11, 0); % deactivate pin

 pause(element_gap)

end

54

if strcmp(duration,'null') == 1

 duration = 0;

end

end

end

C.2.3 Vibration Setup 2: Left/Right Presentation

if vib_setup == 2;

for j = 1:1:5

duration = temp{j};

if strcmp(duration,'dott') == 1

 duration = element_time;

 n = 12;

end

if strcmp(duration,'dash') == 1

 duration = 3*element_time;

 n = 9;

end

if strcmp(duration,'null') == 1

 duration = 0;

end

if duration ~= 0 % dont output null elements (causes a flicker of activation)

digitalout2(A_Uno, n, duration, element_gap);

end

end

end

C.2.4 Vibration Setup 3: Left/Right Presentation with Dot Equal Dash

if vib_setup == 3;

for j = 1:1:5

duration = temp{j};

if strcmp(duration,'dott') == 1

 duration = element_time;

 n = 12;

end

if strcmp(duration,'dash') == 1

 duration = element_time;

 n = 9;

end

if strcmp(duration,'null') == 1

 duration = 0;

end

if duration ~= 0 % dont output null elements (causes a flicker of activation)

digitalout2(A_Uno, n, duration, element_gap);

end

end

end

C.2.5 Vibration Setup 4: Counting with Three Motors

if vib_setup == 4 || vib_setup == 6;

 dott_counter = 0; % counters used to track repeated dott or dashes.

 dash_counter = 0;

for j = 1:1:5

 if j == 1

 prev_element = 0;

55

 end

duration = temp{j};

if strcmp(duration,'dott') == 1

 duration = element_time;

 dash_counter = 0;

 % determine if previous element is identical to current one

 if duration == prev_element % after first element, count sequence.

 dott_counter = dott_counter + 1;

 end

 if dott_counter == 0;

 writeDigitalPin(A_Uno, 12, 1); % activate pin

 pause(duration) % stay active for set duartion

 writeDigitalPin(A_Uno, 12, 0); % deactivate pin

 pause(element_gap)

 end

 if dott_counter == 1;

 writeDigitalPin(A_Uno, 12, 1); % activate pin

 writeDigitalPin(A_Uno, 11, 1); % activate pin

 pause(duration) % stay active for set duartion

 writeDigitalPin(A_Uno, 12, 0); % deactivate pin

 writeDigitalPin(A_Uno, 11, 0); % deactivate pin

 pause(element_gap)

 end

 if dott_counter == 2;

 writeDigitalPin(A_Uno, 12, 1); % activate pin

 writeDigitalPin(A_Uno, 11, 1); % activate pin

 writeDigitalPin(A_Uno, 10, 1); % activate pin

 pause(duration) % stay active for set duartion

 writeDigitalPin(A_Uno, 12, 0); % deactivate pin

 writeDigitalPin(A_Uno, 11, 0); % deactivate pin

 writeDigitalPin(A_Uno, 10, 0); % activate pin

 pause(element_gap)

 dott_counter = 0;

 end

prev_element = duration;

end

if strcmp(duration,'dash') == 1

 if vib_setup == 6

 duration = 3*element_time;

 else

 duration = element_time;

 end

 dott_counter = 0;

 % determine if previous element is identical to current one

 if duration == prev_element % after first element, count sequence.

 dash_counter = dash_counter + 1;

 end

 if dash_counter == 0;

 writeDigitalPin(A_Uno, 9, 1); % activate pin

 pause(duration) % stay active for set duartion

56

 writeDigitalPin(A_Uno, 9, 0); % deactivate pin

 pause(element_gap)

 end

 if dash_counter == 1;

 writeDigitalPin(A_Uno, 9, 1); % activate pin

 writeDigitalPin(A_Uno, 8, 1); % activate pin

 pause(duration) % stay active for set duartion

 writeDigitalPin(A_Uno, 9, 0); % deactivate pin

 writeDigitalPin(A_Uno, 8, 0); % deactivate pin

 pause(element_gap)

 end

 if dash_counter == 2;

 writeDigitalPin(A_Uno, 9, 1); % activate pin

 writeDigitalPin(A_Uno, 8, 1); % activate pin

 writeDigitalPin(A_Uno, 7, 1); % activate pin

 pause(duration) % stay active for set duartion

 writeDigitalPin(A_Uno, 9, 0); % deactivate pin

 writeDigitalPin(A_Uno, 8, 0); % deactivate pin

 writeDigitalPin(A_Uno, 7, 0); % activate pin

 pause(element_gap)

 dash_counter = 0;

 end

prev_element = duration;

end

%if strcmp(duration,'null') == 1

% duration = 0;

%end

%if duration ~= 0 % dont output null elements (causes a flicker of activation)

%digitalout2(A_Uno, n, duration, element_gap);

%end

end

end

C.2.6 Vibration Setup 5: Bilateral Subtilizing (OLD)

if vib_setup == 5

 for j = 1:1:5

 duration = temp{j};

 if strcmp(duration,'dott') == 1

 vib_type(j) = 1;

 end

 if strcmp(duration,'dash') == 1

 vib_type(j) = 2;

 end

 end

 s = SplitVec(vib_type);

 groups = length(s);

 for i = 1:1:groups

 cluster = s{i};

 cluster_size = length(cluster);

 if cluster(1) == 1 %dot

 n = 12;

 for m = 1:1:cluster_size

57

 if n < 10

 pause(element_time)

 writeDigitalPin(A_Uno, 12, 0);

 writeDigitalPin(A_Uno, 11, 0);

 writeDigitalPin(A_Uno, 10, 0);

 pause(element_gap)

 writeDigitalPin(A_Uno, 12, 1);

 writeDigitalPin(A_Uno, 11, 1);

 writeDigitalPin(A_Uno, 10, 1);

 n = n + 1;

 end

 writeDigitalPin(A_Uno, n, 1); % activate pin

 n = n - 1;

 end

 pause(element_time)

 writeDigitalPin(A_Uno, 12, 0);

 writeDigitalPin(A_Uno, 11, 0);

 writeDigitalPin(A_Uno, 10, 0);

 pause(element_gap)

 end

 if cluster(1) == 2 %dash

 n = 9;

 for m = 1:1:cluster_size

 if n < 7

 pause(element_time)

 writeDigitalPin(A_Uno, 9, 0);

 writeDigitalPin(A_Uno, 8, 0);

 writeDigitalPin(A_Uno, 7, 0);

 pause(element_gap)

 writeDigitalPin(A_Uno, 9, 1);

 writeDigitalPin(A_Uno, 8, 1);

 writeDigitalPin(A_Uno, 7, 1);

 n = n + 1;

 end

 writeDigitalPin(A_Uno, n, 1); % activate pin

 n = n - 1;

 end

 pause(element_time)

 writeDigitalPin(A_Uno, 9, 0);

 writeDigitalPin(A_Uno, 8, 0);

 writeDigitalPin(A_Uno, 7, 0);

 pause(element_gap)

 end

 end

end

% END OF FUNCTION

end

C.3 Motor Test

clc

clear all

A = arduino('com4','uno');

58

disp('LEFT MOTOR 1')

writeDigitalPin(A, 12, 1);

pause(3)

writeDigitalPin(A, 12, 0);

disp('done')

pause(3)

disp('LEFT MOTOR 2')

writeDigitalPin(A, 11, 1);

pause(3)

writeDigitalPin(A, 11, 0);

disp('done')

pause(3)

disp('LEFT MOTOR 3')

writeDigitalPin(A, 10, 1);

pause(3)

writeDigitalPin(A, 10, 0);

disp('done')

pause(3)

disp('RIGHT MOTOR 1')

writeDigitalPin(A, 9, 1);

pause(3)

writeDigitalPin(A, 9, 0);

disp('done')

pause(3)

disp('RIGHT MOTOR 2')

writeDigitalPin(A, 8, 1);

pause(3)

writeDigitalPin(A, 8, 0);

disp('done')

pause(3)

disp('RIGHT MOTOR 3')

writeDigitalPin(A, 7, 1);

pause(3)

writeDigitalPin(A, 7, 0);

disp('done')

pause(3)

