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Abstract— This paper presents a theoretical design of
a transfemoral prosthesis based on physical asymmetries.
Breaking the mold of current prostheses, we propose a general
prosthetic leg design in which the knee location is shifted off
its traditional knee line. The objective is to find an above-
knee prosthetic design for which the overall mass is decreased,
especially the below knee portion, while still exhibiting a
symmetric gait pattern. A lighter prosthetic that enables a
symmetric gait will increase the comfort and decrease the
detrimental effects of an asymmetric gait for individuals that
wear prostheses. In individuals with prosthetics, changing the
knee location could also result in a symmetric gait. To analyze
the prosthesis, the existing passive dynamic walker model with
five masses was adapted to include nine masses to better
represent the mass distribution throughout each limb. A search
through the parameter space revealed that a symmetric gait
could arise from a system with different knee locations on both
sides while the mass of the prosthesis was lighter than the
existing leg. In order to accomplish this, the knee location of
the prosthesis was positioned below the intact knee by 36.7%
of the total shank length. This physical asymmetry resulted
in a below knee mass reduction of 68.2% and a total mass
reduction of 13.4% while having a symmetric gait. In addition,
the model gives further indications on where to add or remove
mass to decrease the amount of asymmetry in individuals with
prostheses and other causes of asymmetric gait.

I. INTRODUCTION

This paper extends the mathematical models of passive
dynamic walkers (PDWs) to introduce a corporeal example
of how they can be used for rehabilitation. This paper also
shows how the rotational inertia and center of gravity of
each extremity relate to step length patterns. Furthermore, we
propose a practical application for this model which suggests
a deviation from typical prosthetic designs. Our proposal is
a prosthetic design for transfemoral amputees in which the
position of the knee is moved to a location dissimilar to
the natural leg (see Figure 1). The prosthetic design will
allow for certain design benefits such as minimizing mass
and volume while still giving the amputee consistent step
lengths throughout their gait cycle. The prosthetic knee may
be in a slightly different location, which will affect sitting
and appearance, much like occurs in knee disarticulation [1].
However, the reduction in mass and benefit of symmetric
motion are worthwhile tradeoffs in many instances given the
typical discomfort of wearing prosthetic devices.

To validate the possibilities of a prosthesis with physical
asymmetries relative to the amputee’s non-altered leg, we
investigated the effects of moving the rotational inertia
without changing the center of mass. A PDW model is used
because of its similarity to human gait [11]. Also, because we
are investigating purely dynamic effects, a model excluding
human cognition is desired. To better explore the effects of
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Fig. 1. Left: five mass walker model where thigh and shank masses are
in terms of the left and right legs. Right: an exaggerated view of the knee
location in a prosthesis that can generate a symmetric gait while reducing
the overall mass of the prosthesis.

changing the center of mass and moment of inertia of each
leg independently, we created a nine mass model that better
describes the distribution of mass throughout the limb. Also,
while the old five mass model only accounts for the center
of mass of each extremity, the nine mass model can more
accurately represent inertia.

II. BACKGROUND

Our model is based on a PDW model created by Chen [2].
Derived from the compass gait model, this model divides the
gait cycle into four discrete phases. These are: 3-link phase,
2-link phase, knee strike and heel strike. For a successful
gait to be established, the energy lost at knee strike and heel
strike (the collision events) has to be gained from gravity’s
effect on the overall inertia of the mechanism. The same
energy exchange applies to previous models pioneered by
McGeer. In his seminal paper [11], McGeer compared the
gait cycle to a rimless wheel with collisions occurring as
each spoke made contact with the ground. Expanding on this
concept is the compass gait model, which is fundamentally a
double pendulum with a hip mass and two leg masses. Chen
expanded on this concept by creating a five mass system
to more accurately describe a PDW with knees [2]. Our
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previous model, shown in Figure 2, then specified masses in
terms of which leg they were associated with, giving us the
ability to make physical asymmetries within the model [8].

The effects of modifying physical parameters in a PDW
model was accomplished by moving the location of the knee,
manipulating the location and magnitude of the masses, and
changing the overall length of each leg [8]. In doing this,
several different step patterns were found that could relate
to gait irregularities in humans. Related research was done
by Gregg et al. [6] who changed the ramp angle and initial
conditions to get their model to exhibit asymmetric gait
patterns. They used a physically symmetric model where
changes to the environment evoked asymmetries. In contrast,
we tuned our model with physical asymmetries and observed
the resulting walking patterns.

This paper further explores the effects of changing masses
and mass locations while directly applying these changes to
a practical application, prostheses. It has been found that
those using a prosthesis exhibit less efficient and sometimes
unnatural asymmetric gait patterns [4][7]. This inefficiency
is even more evident in transfemoral amputees and because
of this, a great deal of effort is put into compensating for
these unwanted motions [9]. First, by presenting a nine-mass
model, we will demonstrate an asymmetric step pattern and
tune it towards symmetry without significantly changing the
overall rotational inertia. Then, we will analyze the prosthesis
using the nine mass model.

III. NINE MASS MODEL

A kneed passive dynamic walker can be modeled as an
unactuated multi-pendulum system. The first kneed model
was derived by Chen [2]. Chen took the compass gait [5]
and added knees and shanks to the system to better describe
the human gait. This model has a total of five masses. The
legs were differentiated as: the stance leg (st), which is the
leg that is in contact with the ground and the swing leg
(sw), which is the leg that swings freely. The five mass
model can be seen in Figure 2. In [8], one-dimensional
tests were performed to evaluate the effects of independently
changing the mass of the right shank, the location of the thigh
mass, and the location of the knee. This provided us with
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Fig. 2. Five Mass Walker Model: This is also the same model Chen used.
For our model mt and ms are in terms of the left and right legs.

interesting gait patterns and a basis of how the parameters
affect step patterns, but no real steps toward rehabilitation
research. This model was then further advanced by adding
another mass on each link. Four additional masses were
introduced bringing the total to nine. The nine mass system is
shown in Figure 3. A major benefit of the nine mass system
is that we can better approximate the mass distribution of
human legs and the legs of a physical PDW, which will aid
in the development of different rehabilitation methods. The
nine mass system also gives us a large amount of adjustably
and versatility for different model configurations.

The nine masses shown in Figure 3 are the hip mass
(mh), the upper shank mass on the stance leg (ms2st), the
lower shank mass on the stance leg (ms1st), the upper thigh
mass on the stance leg (mt1st), the lower thigh mass on the
stance leg (mt2st), the upper shank mass on the swing leg
(ms2sw), the lower shank mass on the swing leg (ms1sw),
the upper thigh mass on the swing leg (mt1sw), and the
lower thigh mass on the swing leg (mt2sw). The bottom
rods are the shank links and the top rods are the thigh links.
The shank length is ls = a1 + b1 + c1 and the thigh length
is lt = a2 + b2 + c2, both in terms of st and sw. The total
length is L = ls + lt, also in terms if st and sw. The walker
goes through two distinct stages in its gait pattern: a two-link
phase and a three-link phase. The walker starts in the three-
link phase where it acts as a three link pendulum system.
The three-link phase, shown in Figure 3, is described as Lst

which is connected by the hip to ltsw and the knee connects
ltsw to lssw. The walker stays in the three-link phase until
the knee strike collision occurs. After knee strike, the knee
is locked and the system becomes a double pendulum. The
double pendulum system is the two-link phase (not shown).
The two-link phase has two links Lst and Lsw which are
connected together by the hip. The walker stays in two-
link until the heel strike collision. Heel strike finishes the
walker cycle and three-link starts the cycle again. The nine
mass system’s dynamics are described by the Lagrangian
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Fig. 3. Nine Mass Three Link Model. Note: mt1 mt2 and ms1 ms2 are
in terms of the left and right legs. In this figure c1R.
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formulation for a multi-pendulum system shown in (1),

H(q)q̈ +B(q, q̇)q̇ +G(q) = 0 , (1)

where the three matrices H , B, and G are the inertia,
velocity, and gravity matrices, respectively. The dynamics for
the asymmetric five mass model are derived in [8]. The nine
mass model is essentially the five mass model with added
terms in the Lagrangian matrices. Equation (2) shows the
first term in the inertia matrix for the five mass system,

H11 = mssta1
2
st +mtst(lsst + a2st)

2 +

(mh+mssw +msw)L
2
st, (2)

and (3) is the first term for the nine mass system,
H11 = ms1sta1

2
st +ms2st(a1st + b1st)

2+

mt2st(lsst + c2st)
2 +mt1st(lsst + c2st + b2st)

2+

(mh+ms1sw +ms2sw +mt1sw +mt2sw)L
2
st

(3)
As you can see the nine mass equation is quite a bit longer;
the full derivations are presented in [14].

A. Nine Mass Model Results

We chose to derive the nine mass system to make our
model more versatile, but do the extra masses make a
significant difference? To determine this, we changed the
moment of inertia on specific links on the right leg only
while keeping the center of mass constant. The two masses
move an equal distance away from the baseline location. The
parameter that separates the two masses on each link for the
right leg was incremented from 0m to 0.5m (i.e., b1R and
b2R). There were three tests performed by incrementing b1R
and b2R separately and both b1R and b2R simultaneously.
We were trying to find the value of these parameters that
produced the largest asymmetry but still was able to walk
successfully and stably. Step length difference is used since
it is a common description of asymmetry in human gait
studies [12]. For a test to be successful the walker had to
walk for 50 steps. The largest asymmetry for the shank is
0.0212, which occurs when the two masses are separated
by b1R = 0.24m, which is shown in Figure 4a. When the
two thigh masses are separated by a distance b2R = 0.25, the
system produces a step length difference of 0.0297m, shown
in Figure 4b. The combined thigh and shank test produced an
asymmetry of 0.029m when the shank masses are separated
by b1R = 0.03m and the thigh masses by b2R = 0.26m,
shown in Figure 4c. These results show that the moment
of inertia alone can substantially influence the gait pattern.
Note that all of these asymmetries arise from changing the
moment of inertia on the right leg only while keeping the
left leg parameters held constant.

Next, the configurations with the largest asymmetries
arising from changing the right leg only were used as a
baseline to test the effect of shifting the center of mass
location on the left leg shank and thigh. In other words,
the center of mass was changed on the leg opposite from the
leg that the moment of inertia was changed on. This test will
determine if the asymmetry can be eliminated by changing
the center of mass on the left leg. The two masses on the

0 20 40 60
0.4

0.42

0.44

0.46

0.48

0.5

0.52

Step Number

St
ep

 L
en

gt
h 

(m
et

er
s)

 

 

Left leg step length
Right leg step length

0 20 40 60
0.4

0.42

0.44

0.46

0.48

0.5

0.52

Step Number

St
ep

 L
en

gt
h 

(m
et

er
s)

 

 

Left leg step length
Right leg step length

0 20 40 60
0.4

0.42

0.44

0.46

0.48

0.5

0.52

Step Number

St
ep

 L
en

gt
h 

(m
et

er
s)

 

 

Left leg step length
Right leg step length

0 20 40 60
0.4

0.42

0.44

0.46

0.48

0.5

0.52

Step Number

St
ep

 L
en

gt
h 

(m
et

er
s)

 

 

Left leg step length
Right leg step length

0 20 40 60
0.4

0.42

0.44

0.46

0.48

0.5

0.52

Step Number

St
ep

 L
en

gt
h 

(m
et

er
s)

 

 

Left leg step length
Right leg step length

(a) This step length plot shows the asymmetry that arises when
the separation distance between the two shank masses is 0.24m.
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(b) This step length plot shows the asymmetry that arises when
the separation distance between the two thigh masses is 0.25m.
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(c) This step length plot shows the asymmetry when the two
masses on the shank are separated by 0.03m and the two thigh
masses are separated by 0.26m.

Fig. 4. These step length plots show that an asymmetry arises due to the
altered moment of inertia when the two masses on the right leg thigh and/or
shank are separated. Note that it can take several steps (over 50 in (b)) to
establish a constant pattern.
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(a) This shows the symmetric solution when the right shank masses are
separated (b1R = 0.24m) and c1L = a2L = 0.24m.
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(b) This shows the symmetric solution when the right thigh masses are
separated (b2R = 0.25m) and c1L = 0.17 and a2L = 0.25.
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(c) This shows the symmetric solution when the masses are separated
on both the shank (b1R = 0.03) and the thigh (b2R = 0.26m) and
c1L = 0.14m and a2L = 0.23m.

Fig. 5. These plots show the symmetric gaits generated by altering only
the left leg of the asymmetric models generated in Figure 4 that were made
asymmetric by changing only the right leg. Each subfigure in Figure 4
corresponds to those shown here (e.g., 4a→5a).

left leg segments were located at the same location by setting
b1L and b2L to zero. Essentially we made two large masses,
one on the shank and one on the thigh. Note that the center
of mass and the moment of inertia of the left leg are coupled
while the location of the one larger mass is moved. This is
unlike the right leg where the center of mass stays the same
and the moment of inertia varies.

The values of c1L and a2L were independently iterated
from 0m to 0.5m with all permutations evaluated by a brute
force search. The values of a1L and c2L were modified in
each case to maintain the same total shank and total thigh
lengths. There are certain parameters that lead to a symmetric
gait pattern when the center of mass is moved along both the
shank and the thigh. In Figure 5 it can be seen that the walker
can return to symmetry when the masses on the left leg are
at a specific location. These are the step length plots which
plot the step length vs. the step number. Figure 5a shows the
symmetric solution to the asymmetry created in Figure 4a
which is the asymmetry that arises when the masses on the
right shank are spread out by 0.24m. This created asymmetry
is canceled out when the large coupled masses on the left leg
shank and thigh are both moved to 0.01m above the center of
the shank and think links, respectively. Figure 5b shows the
diminished asymmetry initially caused by the right leg thigh
masses being separated by 0.25m. The reduction happens
when the coupled masses on the left leg shank are moved to
0.17m below the knee and the thigh mass is in the center
of the thigh link (i.e., a2L = 0.25). Figure 5c shows that
the asymmetry in Figure 4c was eliminated when the shank
and thigh mass were moved to 0.14m below the knee and
0.23m below the hip. This shows that with a specified center
of mass and moment of inertia for one leg, the walker can
be tuned to symmetry by holding the center of mass constant
and varying the moment of inertia of the opposite leg.

We are also interested in how the step length difference
changes as the moment of inertia changes. Using the data
from the test when b2R is 0.25m, we iterated c1L and a2L
each from 0m to 0.5m. We then plotted the moment of inertia
for each leg vs. the step length difference. This trend is shown
in Figure 6a. The changing moment of inertia of the left leg
is represented by the black dots, and the constant moment of
inertia on the right leg is represented by the solid red line.
As shown in Figure 6a, the moment of inertia of the left leg
is dependent upon the location of the mass. The location of
the shank and thigh masses on the left leg changes with c1L
and a2L, which is depicted by the colored lines in Figure 6a.
When c1L is approximately 0.3m, the walker will be more
stable. However, if a2L is too large the step length difference
will increase making the walker more unstable. This can also
be seen in Figure 6b, which is a three dimensional plot of
a1L vs. c2L vs. step length difference. It shows that there are
a range of values of c1L and a2L that produce a symmetric
walker given an altered moment of inertia on the opposite
leg. Because of this, there would be many solutions to an
optimization problem based solely on step symmetry, thus
the following results used a brute force solution and we
manually selected several specific configurations to highlight.
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IV. PROSTHETIC MODEL

For the prosthesis tests, we modified our nine mass model
based on anthropomorphic data [3], which gave the location
and magnitude of the center of mass for each part of the
leg. We took these values and allowed them to vary until we
generated a stable and symmetric gait pattern. The values of
the parameters for the anthropomorphic model are listed in
Tables I and II. Then, to develop a model for the prosthesis,
we assumed an amputation point of two thirds of the total
thigh length distally from the hip. We then iterated through
different knee locations and masses of the prosthetic thigh
and shank until we found step length symmetry in the gait.

Figure 1 shows the mass distribution of both the intact
and prosthetic legs. For the intact leg, we placed both thigh
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Fig. 6. The success and failure of the different parameters and the step
lengths of each leg over all the parameters tested.

masses at the center of mass given by the anthropomorphic
model and gave them each a value one half of the total thigh
mass, simulating a single mass. We used one shank mass for
the center of mass of the shank and moved the other down
to represent the foot’s center of mass. A similar distribution
was used for the prosthetic leg with the exception of the
thigh masses. Here, one thigh mass was used to represent
the center of mass of the stump while the other was used for
the center of mass of the prosthetic thigh. In Figure 1, you
can equate the point masses on the model with the colored
sections of the prosthetic model. From top to bottom: Dark
grey represents the mass of the stump, orange represents the
prosthetic thigh, yellow equates to the mass of the prosthetic
shank, and green represents the foot mass. Also, notice the
difference between the prosthesis and natural knee line.

A. Prosthetic Model Results

This prosthetic model is used in our research to break
the assumption that the transfemoral prosthetic knee location
should be the same as the existing knee. Unlike existing
prostheses, tuning the parameters of our prosthetic model
could lead to more symmetric gait patterns but reduce energy
cost. Mattes et al. note that mass of the prosthetic limb and
energy costs are proportional [10]. Thus, we are trying to
reduce the mass of the prosthesis while moving the knee
location to keep a symmetric gait pattern. In addition, this
model can be used to give insights on how to reduce the
asymmetry in individuals that wear existing prostheses.

To find a lighter, prosthesis we set up a brute force search.
This program iterated through a range of values for the
prosthetic thigh, the prosthetic shank, and the knee location.
The knee location is moved by changing c1R and c2R
in relation to each other. The ranges for these values are
shown in Table III. All permutations and combinations were
evaluated. Then, post processing analyzed the data to find
combinations that were optimal. The most ideal or optimal
combination is when the mass of the prosthetic limb is
reduced significantly but the gait is still stable.

Although there are many solutions, we will discuss the
three prosthesis configurations, compared in Table IV. As
a baseline, the first configuration is when the knee location
is in the same location as the knee of the intact leg. For

TABLE I
ANTHROPOMORPHIC MODEL MASS

Mass of Mass of Mass of Mass of
hip (kg) thigh (kg) shank (kg) foot (kg)

Given Masses 0.532 0.115 0.044 0.019
Derived Model 0.532 0.315 0.100 0.019

TABLE II
ANTHROPOMORPHIC MODEL MASS LOCATIONS

Walker Center of mass Calculated Model
parameter location from length (m) location

proximal endpoint
Hip 0.540 0.000 Top of walker
Thigh 0.433 0.217 From hip
Knee 0.000 0.239 From thigh
Shank 0.433 0.217 From knee
Foot 0.429 0.239 From shank
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TABLE III
PROSTHESIS DATA RANGES

Parameter Low Value High Value # increments
Prosthetic Thigh 0 0.1575 16
Prosthetic Shank 0 0.10 16
Knee Location (c1R) 0.0057 0.25 16

TABLE IV
PROSTHESIS MODEL MASS RESULTS

Configuration Thigh Mass Shank Mass Total Mass
Heavier 17% increase 38% decrease 2% increaseSymmetric
Lighter 7.3% increase 68% decrease 13.4% decreaseSymmetric
Lighter 2% decrease 63% decrease 19% decreaseAsymmetric

this configuration to walk symmetrically the total mass of
the prosthetic leg had to be increased by 2%. For this 2%
leg mass increase, the thigh mass increased by 17% while
the shank mass decreased by 38%. The second configuration
achieved a lighter symmetric prosthesis by moving the knee
mass down by 36.7% of the total shank length. In doing this,
we were able to reduce the shank mass by 68% with a thigh
mass increase of 7.3%. This resulted in a 13.4% reduction
of the total mass of the prosthetic leg. Even though this is a
small total mass reduction, the important reduction is in the
shank which was fairly dramatic.

Individuals that wear a prostheses typically have an
asymmetry where their prosthetic leg has a step length that is
longer than their intact leg [10]. Our first two configurations
have shown that we can minimize this asymmetry, but the
third configuration demonstrates that we can go past the
symmetric point and have the prosthetic leg produce a shorter
step length than the intact leg. This configuration would
imply that the prosthetic leg is overcompensating for the
asymmetry that the wearer is likely to develop. To get this
step length outcome, the knee was moved down by 42.8%,
which caused the prosthetic shank mass to be reduced by
63% and the prosthetic thigh mass to be reduced by 2%. This
reduced the entire prosthetic leg mass by 19%. By moving
the knee down and reducing the masses, the step length of the
prosthesis was 7.4% less than the step length of the intact leg.
This outcome shows we can theoretically tune a prosthesis
to be lighter than the intact leg while overcompensating for
the wearer’s developed asymmetry.

V. CONCLUSIONS AND FUTURE WORK

This research is the expansion of previous passive dynamic
walker models to a nine mass model, which allows for
more adjustability, versatility, and better approximates the
human leg mass distribution. We have shown that the nine
mass model has improvements over the traditional five mass
model, which forces the center of mass to change with
the moment of inertia. The nine mass model allows the
moment of inertia to be changed while keeping the center of
mass constant and vise versa. The ability to adjust the mass
locations to any specific walker configuration is very useful
when describing an anthropomorphic model. We were able
to create a theoretical transfemoral prosthetic that was lighter

than the intact leg when the knee location was moved down.
We were able to achieve a 68% decrease in the prosthetic
shank mass and a 13.4% decrease in the total prosthetic mass
while maintaining a symmetric gait pattern. This goes against
traditional prosthetic designs that put the prosthetic knee in
the same location as the intact knee.

An important aspect of this work is human validation.
Preliminary tests have demonstrated that changing simple
parameters such as adding a mass on one foot or changing
the height of a shoe will lead to gait changes as predicted
by the model. However, these comparisons need to be with
individuals who wear prostheses.

This model of walking can be extended to analyze how
the joint torques affect the stress on the joints. As opposed to
simply looking for symmetric steps, which is one important
parameter for efficient gait, analyzing the stress on joints
could be another measure that is minimized.

Another extension of this model is to look at how
spasticity, the tightness in the muscles arising from a
stroke [13], affects gait patterns. The model of joint spasticity
can be modeled by using velocity dependent damping and
position dependent stiffness on one of the knees in the
PDW model. Then, like done in this paper, the developed
asymmetry that arises can be reduced by changing other
parameters in the model.
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