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Abstract

Testing gait rehabilitation devices on humans can be a difficult task, due to the effects of

the neurological controls of the human body. This thesis advances the use of a passive

dynamic walker (PDW) tuned to have asymmetric gait patterns similar to those with

physical impairments to test rehabilitation devices. A passive dynamic walker is a multi-

pendulum system that has a stable gait pattern when walking down a slope without any

energy inputs except the forces due to gravity. A PDW model is better suited for testing

rehabilitation devices because it has been shown to resemble human gait and separates the

human neurological controls from the purely dynamic aspects of walking. This research

uses different asymmetric gait patterns based on an asymmetric PDW to aid in the design

of current and future rehabilitation methods. There are four major parts to this research:

(1) the derivation of the current nine mass PDW model, (2) the effects of changing the

moment of inertia and center of mass on each leg, (3) the effects of having a leg that

is longer than the other and adding masses on the opposite leg to generate a symmetric

gait, and (4) the design of a theoretical prosthesis that will break the assumption that the

knee on the prosthetic leg should be in the same location as the intact leg. The result of

changing the moment of inertia and center of mass on each leg in the nine mass model

showed that it is an improvement over the previously used five mass model. This is be-

cause the five mass model forces the center of mass to change with the moment of inertia,

while the nine mass model allows these to be changed independently of each other. A

theoretical prosthesis has been developed in this research that is is significantly lighter

vii



while maintaining a symmetric gait. This was accomplished by moving the knee of the

prosthetic limb below the location of the intact knee.
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Chapter 1: Introduction to Research

This thesis shows the use of a passive dynamic walker (PDW) for testing rehabilitation

methods and devices. A PDW is a multi-link pendulum system that exhibits a steady

and stable gait when walking down a slope without any energy inputs except the forces

due to gravity. This research uses PDW models because they have shown their ability

to recreate a gait that is repeatable and is dynamically similar to humans [15]. The dy-

namics of a PDW model can be modified to produce asymmetric gait patterns that are

similar to individuals with impairments. These asymmetries will be used to examine

gait rehabilitation methods. A PDW is important for this purpose because it separates the

mechanical aspects of walking from the neurological controls of a human. The ability to

separate the neurological controls from walking is what will aid in the design and testing

of rehabilitation devices. Testing gait rehabilitation devices on humans is problematic due

to the cognitive influences that emerge while walking.

A large part of this research is the derivation of the nine mass PDW model and how it is

an improvement over previous models. To validate this model, I explored the effects of

changing the center of mass and moment of inertia of each leg. This validation focuses

on the rotational inertia and center of mass of each link and relates it to the symmetry of

the walker model by changing the locations of the masses on the PDW model. I also per-

formed tests on the nine mass model to analyze different rehabilitation methods. These

tests were designed to reduce the asymmetries arising from common impairments. The

first test looked at correcting the asymmetry that arises when an individual has one leg

that is longer than the other. This asymmetry was reduced by adding two masses on the
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shorter leg. The second test was to reduce the asymmetry that transfemoral amputees

experience while wearing their prostheses. This is achieved by moving the prosthetic

knee location below the intact knee location and reducing the prosthetic mass.

The application of passive dynamic walkers being used for gait rehabilitation is a gener-

ally novel idea. Until now, there has not been research that links PDWs with human gait

correction. The only research that has been conducted that uses non-human models for

gait rehabilitation was done by Otoda. Otoda used a learning algorithm on a humanoid

robot walking on a split-belt treadmill [16]. A split-belt treadmill has two belts that can

move independently of each other at different speeds. It has been shown that walking on a

split-belt treadmill can be used to correct gait impairments (explained in more detail later

in this thesis) [18]. Otoda found that the robot was able to adapt its gait to the motion

of the treadmill by changing parameters on its body [16]. One of the problems with hu-

manoid robots is that they are very complex so the number of variables greatly increases.

Also, the study of non-human gait asymmetries is rather new. Gregg et al. focused on

biped asymmetries arising from changing physiological or environmental conditions on

the biped [8]. Examples of some of these changing conditions are the ramp angle and the

initial angular positions and velocities. My research of using a passive dynamic walker to

study gait dynamics for rehabilitation methods is original.

Another important reason for this research is all prior research used the five mass model

(explained in detail later in this thesis). I have extended this to a nine mass model by

adding an extra mass on each individual link of the walker, four in total. My hypothesis

is that adding the four more masses will better describe the mass distribution of physical

legs. This is because I can tune the moment of inertia to be similar to that of a human.

I think that having these extra masses will better aid in the tuning of physical passive

dynamic walkers. The five mass model forces the moment of inertia to change when the

center of mass is changed, which is not ideal for tuning. With the nine mass model I can
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change the moment of inertia independent of the center of mass. Tuning a PDW with

the moment of inertia of the leg links is of greater importance than the location of the

center of mass. This model is currently being used for designing and tuning the physical

PDW in [10]. The ability to change the moment of inertia while keeping the center of

mass constant expedited the tuning phase of the walker. This is because it can be used

for cause and effect scenarios. For example, the model can be used to test new design

configurations on the walker before actually being applied to the physical walker. The

physical PDW is detailed in [10] and discussed some later in this thesis.
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Chapter 2: Background

This thesis presents the derivation and application of a mathematical model of a two

dimensional planar walker. The model is based upon the principles of passive dynamic

walking and will be implemented to test gait rehabilitation techniques. This chapter will

discuss the history of passive dynamics, the previous walker models, gait dynamics of the

models, and how it can be used for rehabilitation.

2.1 Passive Dynamic Walker Models

"A passive dynamic walker (PDW) is a device that exhibits a steady and stable gait down

a slope without any energy inputs except the forces due to gravity" [11]. The dynamics of

a passive dynamic walker approximate the gait dynamics of a human accurately [15]. An

important part of the study of passive dynamic walkers is the mathematical models that

describe the walker’s dynamics. The first theoretical model that describes gait dynamics

and locomotion was created by Margaria in 1976. Margaria stated that human gait dy-

namics are similar to that of a rimless wheel rolling down a hill. The rimless wheel shown

in Figure 2.1 has massless spokes and a single point mass at the center. The rimless wheel

eventually settles into an equilibrium [13]. McGeer used the rimless wheel dynamics to

derive equations that describe the first PDW model. McGeer noticed that the equilibrium

that a PDW settles into is similar to the equilibrium that the rimless wheel exhibits [15].

Out of McGeer’s research came the compass gait model. This model relates walking to

passive dynamics in the simplest form [6]. The compass gait model is a double pendulum
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Figure 2.1: The rimless wheel

system with two leg masses and a hip mass, which follows human like gait patterns [7].

The compass gait model is shown in Figure 2.2a. In 2005, Chen advanced the compass

gait model by adding knees and two more masses, as shown in Figure 2.2b. Chen created

a full mathematical model for this system similar to the equations derived for the compass

gait [1]. I then extended Chen’s research by differentiating between the left and right leg.

This is the five mass model which lets us change specific parameters on each leg to find

asymmetric gait patterns . The five mass model can be seen in Figure 2.2c. Figure 2.2c

shows that the right leg (green) is different from the left leg (blue). Figure 2.2 shows

a flow chart that depicts the evolution of the walker models starting with the compass

gait [7], then Chen’s kneed model [1], the five mass model [11], and finally the nine mass

model.

2.2 Passive Dynamic Walkers

Some of the walkers that have been previously designed and made can be seen in Fig-

ure 2.3. Starting on the left is McGeer’s walker, that he designed in the 1980’s [15]. McGeer’s
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Figure 2.3: Some previous work on passive dynamic walkers. Left to Right: McGeer’s
first walker [15]; The Cornell biped with arms [3]; The Cornell Ranger [12]; The TU
Delft MIKE Robot [21].

first walker was very interesting because it did not have knees but instead used motors

to lift up the feet to clear the ground on each step. McGeer mentions in his paper that to

have the feet clear the ground one of the following techniques has to be employed: his

ankle actuation, a walker that waddles from left to right, or knees [15]. Second from the

left is the Cornell biped with arms [3]. This biped best describes the human gait. Due to

its swinging arms it better represents the human trunk. Third from the left is the Cornell

ranger which holds the record for longest distance traveled by a PDW of 40.5 miles. The

Ranger has actuators on the ankles to add in the energy at heel-strike [12]. The walker

farthest on the right is the Tu Delft MIKE robot. It is an autonomous walking robot based

on a PDW. The MIKE robot has minimal amounts of actuation at the knees and foot to

add energy into the system. The actuators are pneumatic and have to be very light and

efficient to add the needed amount of energy but light enough to not affect the dynamics.

The actuators essentially act as muscles for the robot [21].
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2.3 The Gait Dynamics of a Passive Dynamic Walker Model

In preliminary research for this thesis, one dimensional tests were used to evaluate the

effects of changing the magnitude of the link masses, the location of the the link masses

and the position of the knee [11]. This research evaluated the previously mentioned five

mass model. The five mass model can be seen in Figure 2.2c. Parameters were changed

on the right leg of the five mass model to alter its gait pattern from symmetry. Specific pa-

rameters were changed to create different model configurations. Asymmetries arose from

some of these configurations. For a model configuration to be a successful configuration,

it had to walk for fifty steps. The asymmetries are defined by having step lengths of the

left and right leg that are not equal. Step length is the distance between the legs when the

swing leg makes contact with the ground. After changing the parameters, four different

gait patterns emerged:

1. Symmetric step pattern: This pattern is normal symmetric walking where both step

lengths quickly converge to one value. This gait pattern best represents human gait,

as seen in Figure 2.4.

2. The leg specific single step pattern: For this pattern, each leg has its own specific

step length. This is the most stable step pattern besides the symmetric pattern. This

pattern best represents an asymmetric gait pattern of a human who has suffered a

stroke or other impairments. An example of the single step pattern can be seen in

Figure 2.5.

3. Leg specific double step pattern: Whereas in the single step pattern each leg has its

own step length, in the double step pattern each leg has two unique step lengths.

Looking at Figure 2.6, the right leg always has a longer step length than the left leg.

Step 2 corresponds to the first right leg step in the cycle. This occurs when the right

leg is swinging. Figure 2.6 also shows that step 2 is always the longest.
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4. Leg specific quadruple step pattern: This is the most interesting gait pattern pro-

duced in [11]. Similar to the double step, step 2 will always have the longest step

length. There are now four specific step lengths for each leg. The gait pattern can

be seen in Figure 2.7.

These gait patterns were a study of interesting dynamics and gives a basis on the dy-

namics of walking. The single step pattern will be useful for modeling gait patterns of

humans with impairments, but the research done in [11] does not take any major steps

toward rehabilitation. That being said, it did give insight into the effects of changing

different design parameters. The research done in [11] produced useful descriptions of

the symmetry on a PDW model configuration. The top of Figures 2.4 through 2.7 show

two different plots. The plot on the left is the step length plot, which compares the step

length versus the step number, and is the main measuring tool for symmetry. On the right

is the limit cycle trajectory, which depicts the motion in each phase of of the PDW’s gait.

The limit cycle plot shows the angle in radians versus angular velocity in radians per

second. Figure 2.5 describes the limit cycle plot and what each color line depicts. This

plot follows the right leg in every part of its dynamics. This plot directly relates to the

kinetic and potential energy of the right leg. Red and green are the three-link and two-

link phases while the right leg is swinging. There is a jump between the red and green

lines that shows the energy change after knee strike. After the green line, there is another

jump that separates the blue line, which is the energy change from heel strike. The blue

and black lines are the three-link and two link phases when the right leg is the stance leg.

The jump between the back and blue lines is the energy changed due to knee strike of the

left leg. The energy change between the black and red line is the heel strike event for the

left leg. The cycle starts back with the red line where the right leg is swinging in three-

link phase. These dynamics will be explained in better detail later in this thesis when the

current PDW model is described.
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Figure 2.5: The single step pattern.
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Figure 2.7: The quadruple step pattern.
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2.4 Application For Rehabilitation

As stated above, currently the only research being done that uses non-human models for

gait rehabilitation uses humanoid robots. Humanoid robots were not chosen for this re-

search because their gait does not model the gait of a human very accurately. The reason

for this is because humanoid robots walk in a quasi-static manor, meaning that the way

they achieve equilibrium is statically. So a humanoid robot can stop at any point in its

gait. The most notable humanoid robot is the Honda AISMO, which demonstrates very

clearly a non-human gait. Humans on the other hand walk in a dynamic equilibrium.

There are points in a human’s gait pattern where they cannot stop because they will fall.

A human’s gait can be described as perpetual free fall. A PDW has as similar gait pattern

to a human because it can also only achieve equilibrium dynamically. This makes PDWs

ideal to test rehabilitation methods and devices. PDWs allow the ability to examine dif-

ferent asymmetric gait patterns without the cognitive influence of human neurological

controls. This is important when studying individuals with neurological disorders like

someone who suffered a stroke and will aid in the design of rehabilitation devices.

One of these devices I would like to examine is the Gait Enhancing Mobile Shoe (GEMS)

[4][9]. The GEMS is a rehabilitation shoe that focuses on correcting human asymmetric

gaits. The GEMS is shown in Figure 2.8. Studies have shown that the use of split-belt

treadmill training can correct asymmetric gaits. A split-belt treadmill is a treadmill that

has two treads that can each move at different speeds allowing for control of each of

the participant’s legs independently. This ability for control is what allows for the gait

correction because it forces the lagging leg to walk at a faster rate, which exaggerates

the asymmetry and generates an after-effect that is the correct gait. The effects of split-

belt treadmill rehabilitation diminish quickly when the participants start walking on solid

ground [18][2]. It is not clearly known why these effects diminish so quickly. One major

hypothesis is that the perception while walking on the treadmill differs greatly from walk-
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Figure 2.8: The gait enhancing mobile shoe (GEMS). [9]

ing on solid ground. The GEM shoe replicates the backwards motion that the split-belt

treadmill produces, but allows the participant to walk on solid ground [9]. If the GEM

shoe could be modeled mathematically, it could be imposed on one of the feet in the nine

mass model to correct a theoretical asymmetric gait.

The nine mass model could be applied to transfemoral prosthesis design. Individuals

who wear a prostheses typically have an asymmetry where their prosthetic leg has a step

length that is longer than their intact leg. Because of this asymmetry and the weight of

the prosthesis, individuals with a prosthetic limb use more energy when walking than

individuals with both legs intact [14]. Mattes et al. discuss that a symmetric gait pattern

and weight reduction reduce the energy used while walking [14]. My model is used in

this thesis to find a symmetric gait pattern for a prosthesis that is also significantly lighter.
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Chapter 3: Nine Mass Kneed Walker Model

A kneed passive dynamic walker can be modeled as a multi-pendulum system that is un-

actuated. The first iteration of the model was done by Chen [1], who took the compass

gait model and added knees, thus making it a more human like model. I took this further

in my model by differentiating between each leg. The two legs are the stance leg (st),

which is the leg that is in contact with the ground, and the swing leg (sw), which is the

leg swinging freely. Using swing and stance makes the equations more general. In prac-

tice the equations have to be written twice in terms of right and left leg changing from

stance to swing. For example, one set of equations describe when the left leg is the stance

leg and the other set would describe when the right leg is the stance leg. This differentia-

tion is used to develop asymmetries by changing parameters on each leg. I call this model

the five mass system and it is shown in Figure 2.2c. To better develop asymmetries, I

added another mass on each link making a nine mass system. The nine mass model is

seen in Figure 2.2d and in Figure 3.2. With this model, I can more accurately describe the

leg mass distribution. The nine masses are the hip mass (mh), the upper shank mass on

the stance leg (ms2st), the lower shank mass on the stance leg (ms1st), the upper thigh

mass on the stance leg (mt1st), the lower thigh mass on the stance leg (mt2st), the upper

shank mass on the swing leg (ms2sw), the lower shank mass on the swing leg (ms1sw),

the upper thigh mass on the swing leg (mt1sw), and the lower thigh mass on the swing

leg (mt2sw). The bottom rods are the shank links and the top rods are the thigh links. The

shank length is ls = a1 + b1 + c1 and the thigh length is lt = a2 + b2 + c2, both in terms of

st and sw. The total length is L = ls + lt, also in terms if st and sw.
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The nine mass system better approximates human legs and physical passive dynamic

walker legs because I can better approximate the mass distribution. Also as stated pre-

viously, I am able to fine tune the moment of inertia to whatever model I am trying to

examine. The nine mass model is an improvement over the five mass system because of

the amount of adjustably and versatility it provides. The five mass model has also been

derived, in Appendix A.

The walker goes through two distinct stages in its dynamics: a two-link phase and a three-

link phase. The three-link phase is the starting phase for the walker. The three-link phase

is shown in Figure 3.2. From these figures it can be seen that Lst is connected to the hip,

which is in turn connected to ltsw. The knee is what joins lssw to ltsw. The walker stays

in the three-link phase until the knee strike event. After knee strike occurs, the knee is

locked and the system is a double pendulum. This double pendulum system is the two-

link phase shown in the nine mass model of Figure 3.3. The walker is in two-link phase

until the heel strike event. Heel strike finishes the cycle of the walker and three-link starts

again. The two-link phase has two links Lst and Lsw, which are connected together by the

hip.

3.1 Three-Link and Two-Link Dynamics

The walker’s dynamics can be derived using the Lagrangian formulation for a multi-

pendulum system shown in (3.1). The three matrices in this equation H , B, and G are

the inertia, velocity, and gravity matrices respectively. The components of these matrices

will be described in the following equations.

H(q)q̈ +B(q, q̇)q̇ +G(q) = 0 (3.1)
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3.1.1 The Three-Link Phase Dynamics

The three-link dynamics were derived using the Lagrangian formulation for a pendulum

system with multiple links. The three-link inertia matrix for a nine mass system is derived

in the following equations:

H11 = ms1sta1
2
st +ms2st(a1st + b1st)

2+

mt2st(lsst + c2st)
2 +mt1st(lsst + c2st + b2st)

2+

(mh+ms1sw +ms2sw +mt1sw +mt2sw)L
2
st

(3.2)

H12 = −[mt1swa2sw +mt2sw(a2sw + b2sw)+

ms1swltsw +ms2swltsw]Lst cos(q2 − q1)

(3.3)

H13 = −[ms2swc1sw +ms1sw(c1sw + b1sw)]Lst cos(q3 − q1) (3.4)

H21 = H12 (3.5)

H22 = mt1swa2
2
sw +mt2sw(a2sw + b2sw)

2 +ms1swlt
2
sw +ms2swlt

2
sw (3.6)

H23 = [ms2swc1sw +ms1sw(c1sw + b1sw)]ltsw cos(q3 − q2) (3.7)

H31 = H13 (3.8)

H32 = H23 (3.9)

H33 = ms2swc1
2
sw +ms1sw(c1sw + b1sw)

2 (3.10)

H =


H11 H12 H13

H21 H22 H23

H31 H32 H33

 (3.11)
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The three-link velocity matrix for the 9 mass system is derived in the following equations:

h122 = −[mt1swa2sw +mt2swa2sw + b2sw)+

ms1swltsw +ms2swltsw]Lst sin(q2 − q1)

(3.12)

h133 = −[ms2swc1sw +ms1sw(c1sw + b1sw)]Lst sin(q3 − q1) (3.13)

h211 = −h122 (3.14)

h233 = [ms2swc1sw +ms1sw(c1sw + b1sw)]ltsw sin(q3 − q2) (3.15)

h311 = −h133 (3.16)

h322 = −h233 (3.17)

B =


0 h122q̇2 h133q̇3

h211q̇2 0 h233q̇3

h311q̇1 h322q̇2 0

 (3.18)

The gravity matrix for the 9 mass system in the three-link phase is derived in the follow-

ing equations:

g1 = −[ms1sta1st +ms2st(a1st + b1st)+

mt2st(lsst + c2st) +mt1st(lsst + a2st + b2st)+

(mh+ms1sw +ms2sw +mt1sw +mt2sw)Lsw] sin(q1)g

(3.19)

g2 = [mt1swa2sw +mt2sw(a2sw + b2sw)+

ms1swltsw +ms1swltsw] sin(q2)g

(3.20)

g3 = [ms2swc1sw +ms1sw(b1sw + c1sw)] sin(q3)g (3.21)

G = [g1 g2 g3]
T (3.22)
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3.1.2 The Two-Link Phase Dynamics

The two-link phase equations are similar to the three-link except less complicated. Due

to the fact that the knee is locked for the two-link phase the amount of terms are reduced.

The two-link inertia matrix is derived in the following equations:

H11 = ms1sta1
2
st +ms2st(a1st + b1st)

2+

mt2st(lsst + c2st)
2 +mt1st(lsst + c2st + a2st)

2+

(mh+ms1sw +ms2sw +mt1sw +mt2sw)L
2
st

(3.23)

H12 = −[mt1swa2sw +mt1sw(a2sw + b2sw) +ms2sw(ltsw + c1sw)+

ms1sw(ltsw + b1sw + c1sw)]Lst cos(q2 − q1)

(3.24)

H21 = H12 (3.25)

H22 = mt1swa2
2
sw +mt2sw(a2sw + b2sw)

2+

ms2sw(ltsw + c1sw)
2 +ms1sw(ltsw + c1sw + b1sw)

(3.26)

H =

 H11 H12

H21 H22

 (3.27)

The Lagrangian velocity matrix for the two-link phase:

h = −[mt1swa2sw +mt2sw(a2sw + b2sw) +ms2sw(ltsw + c1sw)+

ms1sw(ltsw + b1sw + c1sw)]Lst sin(q2 − q1)

(3.28)

B =

 0 hq̇2

−hq̇1 0

 (3.29)
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g1 = −[ms1sta1st +ms2st(a1st + b1st)+

mt2st(lsst + c2st) +mt1st(lsst + a2st + c2st)+

(mh+ms1sw +ms2sw +mt1sw +mt2sw)Lsw] sin(q1)g

(3.30)

g2 = [mt1swa2sw +mt2sw(a2sw + b2sw)+

ms2sw(ltsw + c1sw) +ms1sw(ltsw + b1sw + c1sw)] sin(q2)g

(3.31)

G =

 g1

g2

 (3.32)

3.2 Collision Events

The collision events, as mentioned earlier, are the knee strike and heel strike. These colli-

sions are modeled as inelastic and instantaneous. They are derived from the conservation

of angular momentum about the appropriate point for the specific collision.

3.2.1 Knee Strike

The knee strike collision is the collision that changes the walker from the three-link phase

to the two-link phase. The collision is considered inelastic due to the fact that the knee

stays locked through the two-link phase.

The following equations take the pre-collision velocities (q−) and apply conservation of

angular momentum and output the post-collision velocities (q+). It is to be noted that the

superscript + is post-collision and − is pre-collision.

 q̇1
+

q̇2
+

 = Q+−1


q̇1

−

q̇2
−

q̇3
−

Q− (3.33)
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α = q1 − q2 (3.34)

β = q1 − q3 (3.35)

γ = q2 − q3 (3.36)

Q+
11 = Q+

21 +mt2st(lsst + c2st)
2 +mt1st(lsst + b2st + c2st)

2+

(mh+mt1st +mt2st +ms1st +ms2st)L
2
st+

ms1sta1
2
st +ms2st(a1st + b1st)

2

(3.37)

Q+
12 = Q+

21 +ms2sw(ltsw + c1sw)
2 +ms1sw(ltsw + b1sw + c1sw)

2+

mt1swa2
2
sw +mt2sw(a2sw + b2sw)

2

(3.38)

Q+
21 = −[ms2sw(c1sw + ltsw) +ms1sw(c1sw + b1sw + ltsw)

mt1swa2sw +mt2sw(a2sw + b2sw)]Lst cos(α)

(3.39)

Q+
22 = ms2sw(ltsw + c1sw)

2 +ms1sw(ltsw + b1sw + c1sw)
2

mt1swa2
2
sw +mt2sw(a2sw + b2sw)

2

(3.40)

Q−
11 = −[ms1swltsw +ms2swltsw+

mt1swa2swmt2sw(a2sw + b2sw)]Lst cos(α)

−[ms2swc1sw +ms2sw(b1sw + c1sw)]Lst cos(β)+

[ms1sw +ms2sw +mt1sw +mt2sw]L
2
st+

ms1sta1
2
st +ms2sw(a1sw + b1sw)

2+

mt2st(lsst + c2st) +mt1st(lsst + b2st + c2st)

(3.41)
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Q−
12 = −[ms1swltsw +ms2swltsw+

mt1swa2sw +mt2sw(a2sw + b2sw)]Lst cos(α)+

[ms2swc1sw +ms1sw(b1sw + c1sw)]ltsw cos(γ)+

mt1swa2
2
sw +mt2sw(a2sw + b2sw)

2+

ms1swlt
2
sw +ms2swlt

2
sw

(3.42)

Q−
13 = −[ms2swc1sw +ms2sw(b1sw + c1sw)]Lst cos(β)+

[ms2swc1sw +ms1sw(b1sw + c1sw)]ltsw cos(γ)+

ms2swc1
2
sw +ms1sw(b1sw + c1sw)

2

(3.43)

Q−
21 = −[ms1swltsw +ms2swltsw+

mt1swa2sw +mt2sw(a2sw + b2sw)]Lst cos(α)+

−[ms2swc1sw +ms2sw(b1sw + c1sw)]Lst cos(β)

(3.44)

Q−
22 = [ms2swc1sw +ms1sw(b1sw + c1sw)]ltsw cos(γ)+

mt1swa2
2
sw +mt2sw(a2sw + b2sw)

2+

ms1swlt
2
sw +ms2swlt

2
sw

(3.45)

Q−
23 = [ms2swc1sw +ms1sw(b1sw + c1sw)]ltsw cos(γ)+

ms2swc1
2
sw +ms1sw(b1sw + c1sw)

2

(3.46)

Q+ =

 Q+
11 Q+

12

Q+
12 Q+

22

 (3.47)

Q− =

 Q−
11 Q−

12 Q−
13

Q−
12 Q−

22 Q−
23

 (3.48)
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3.2.2 Heel Strike

The heel strike event is when the walker finishes the two-link phase by the swing foot

impacting with the ground. After the impact the swing foot then becomes the stance foot

and the walker starts the three-link phase and rotates around the new stance foot.

q+ =


q−2

q−1

q−1

 (3.49)


q̇1

+

q̇2
+

q̇3
+

 = Q+−1

 q̇1
−

q̇2
−

Q− (3.50)

q̇+3 = q̇+2 (3.51)

α = q1 − q2 (3.52)

Q+
11 = Q+

21 +ms1swa1
2
sw +ms2sw(a1sw + b1sw)

2+

mt1sw(c2sw + b2sw + lssw) +mt2sw(c2sw + lssw)
2+

(ms1st +ms2st +mt1st +mt2st)L
2
sw

(3.53)

Q+
12 = Q+

21 +ms2st(c1st + ltst)
2 +ms1st(c1st + b1st + ltst)+

mt1sta2
2
st +mt2st(a2st + b2st)

2

(3.54)

Q+
21 = −[ms1st(c1st + b1st + ltst) +ms2st(c1st + ltst)+

mt1sta2st +mt2st(a2st + b2st)]Lsw cos(α)

(3.55)

Q+
22 = mt1sta2

2
st +mt2st(a2st + b2st)

2+

ms2st(ltst + c1st)
2 +ms1st(ltst + b1st + c1st)

2

(3.56)
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Q−
11 = Q−

12 + [mhlst + 2mt2st(c2 + lsst)+

2mt1st(c2st + b2st + lsst)+

ms1sta1st +ms2st(a1st + b1st)]Lst cos(α)

(3.57)

Q−
12 = −[ms1swa1sw(ltsw + b1sw + c1sw)+

ms2sw(a1sw + b1sw)(ltsw + c1sw)+

mt2sw(a2sw + b2sw)(lssw + c2sw)+

mt1swa2swa2sw(lssw + b2sw + c2sw)]

(3.58)

Q−
21 = Q−

12
(3.59)

Q−
22 = 0 (3.60)

Q+ =

 Q+
11 Q+

12

Q+
12 Q+

22

 (3.61)

Q− =

 Q−
11 Q−

12

Q−
12 Q−

22

 (3.62)

3.3 Nine Mass Model Results

The nine mass model was derived to make a more versatile and adaptable model to better

simulate the mass distribution throughout each limb, but do the extra four masses make

a significant difference over the five mass model? To answer this question, I started by

changing the moment of inertia of the shank and thigh on the right leg only while keeping

the center of mass constant. This was done by moving the two masses an equal distance

away from the center of the specific link (the shank and the thigh). A large asymmetry

arose from changing the moment of inertia and keeping the center of mass constant on the

right leg. I then corrected this asymmetry by changing both the moment of inertia and the
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center of mass together on the left leg. Using the data from these tests, I was able to look

at the trends of changing moment of inertia on a passive dynamic walker model. All of

the masses, locations for the masses, and initial conditions are from [1].

The nine mass model can be used to model specific parts of a leg more accurately than

the five mass model. This attribute will be seen later when the prosthetic model is dis-

cussed. In this test one of the legs is divided into four specific parts each described by its

own mass and location. These parts could not have been described by the five mass model

due to its lack of the necessary parameters. Also, the nine mass model is useful when

testing correcting gait asymmetries by adding masses. This is shown later in this thesis

where a large asymmetry is corrected by adding a mass to the thigh and shank. Adding

a mass in the five mass model is not possible. The only way to create a similar test using

the five mass model is to have the masses move along the links, but this does not describe

the dynamics of adding a mass as accurately. A similar model to the nine mass model

could have also been derived by taking the five mass model and adding moments to the

links instead of added masses. I chose to derive the nine mass model because it would

better describe the test previously mentioned than the five mass model with moments.

3.3.1 Creating a Large Asymmetry by Changing the Moment of Inertia While

Keeping the Center of Mass Constant

To accomplish the task of changing the moment of inertia while keeping the center of

mass constant, the parameter that separates the two masses on each link (i.e., b1R and

b2R) were incremented from 0m to 0.5m. Three tests were performed by incrementing

b1R and b2R separately and both b1R and b2R simultaneously. This is done to change

the moment of inertia while keeping the center of mass constant on the right leg. The

goal of these tests was to find the largest asymmetry that arises, but still allow the PDW

to walk successfully and have a stable gait. Step length difference is used in this research
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to quantify asymmetry and it is a common way to describe asymmetry in human gait [17].

Similar to the five mass research, the walker configuration has to walk for fifty steps for a

test to be successful. When the parameter that separates the two shank masses on the right

leg (b1R) equals 0.24m, a step length difference of 0.0212m is generated. The asymmetry

can be seen in Figure 3.4. For the test that separated the two thigh masses on the right

leg, I found the largest asymmetry when b2R = 0.25m. This produces an asymmetry

of 0.0297m and it can be seen in Figure 3.5. For the test when both b1R and b2R were

changed simultaneously the largest asymmetry was 0.0300m. This asymmetry happens

when b1R = 0.07 and b2R = 0.26 and can be seen in Figure 3.6. As already stated,

these tests changed the moment of inertia while holding the center of mass constant.

The reason I tested this is because the five mass system cannot change the moment of

inertia without changing the center of mass. Figures 3.4 through 3.6 show the step length

plot and the limit cycle trajectory plot. As discussed earlier, the step length plots show

the step number versus step length and is a good measure of the symmetry of a walker

configuration. The step length plots for Figures 3.4 and 3.5 are both single step patterns

and the step length plot in Figure 3.4 is a double step pattern. The limit cycle plot depicts

the angle versus the angular velocity in each phase of the model’s gait for the right leg.

Each color represents a phase in the dynamics following the right leg. Red and green

are the three-link and two-link respectively while the right leg is swinging. After this,

the right leg is the stance leg, where blue is the three-link and black is the two-link. By

making these asymmetries, I have shown that changing the moment of inertia without

changing the center of mass has direct implications on the gait dynamics. Figure 3.2

shows the nine mass model to reference the parameters that are discussed.

As a check to make sure the tests were done correctly. I took the largest asymmetries dis-

cussed earlier and repeated the same test but with the left leg to make sure the walker will

have a symmetric gait when the parameters are symmetric. For example I took the asym-

metry that arose when the masses on the thigh were separated by 0.25m and changed
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(a) The step length plot when b1R = 0.24m
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(b) The limit cycle plot when b1R = 0.24m

Figure 3.4: The masses on the right leg shank are separated by 0.24m. The separation of
the shank masses results in an asymmetry of 0.0212m.
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(b) The limit cycle plot when b2R = 0.25m

Figure 3.5: The masses on the right leg thigh separated by 0.25m. This results in an
asymmetry of 0.0297m.
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(a) The step length plot when b1R = 0.07m and b2R = 0.26m
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(b) The limit cycle plot when b1R = 0.07m and b2R = 0.26m

Figure 3.6: The masses on both the shank and thigh right leg are separated by 0.07m and
0.26m. This separation results in an asymmetry equaling 0.0300m.
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the moment of inertia on the left leg thigh while holding the center of mass constant. I

iterated through values of b2L from 0m to 0.5m. This test had a symmetric gait pattern

when b2L = b2R = 0.25m. This trend happened with all three testes. For the separated

shank mass the model was symmetric when b1L = b1R = 0.24 and the same for when

both the thigh and shank masses on the right leg were separated (b1L = b1R = 0.07m

and b2L = b2R = 0.26m). This means that the data is valid because the model produces a

symmetric gait when the parameters are symmetric.

3.3.2 Correcting the Large Asymmetries that Arose

Using the largest asymmetries from changing the moment of inertia on the right leg as

a baseline, I tested the effect of changing the center of mass location on the left leg shank

and thigh. Meaning, I am changing the center of mass on the leg opposite the leg I changed

the moment of inertia on. The goal of this is to diminish the asymmetry that arose from

changing the moment of inertia on the right leg by changing the center of mass on the left

leg. The two masses on each link were moved on top of each other by setting b1L and

b2L (see Figure 3.2) equal to zero. This effectively makes one large coupled mass on the

left leg thigh and shank, making the left leg only have two masses on it. Now on the left

leg the moment of inertia is dependent on the center of mass. This is unlike the previous

test on the right leg where the center of mass remained constant while the moment of

inertia changed.

I iterated through values of c1L and a2L from 0m to 0.5m with all permutations eval-

uated. The values of a1L and c2L were made dependent on c1L and a2L to maintain

the total length for the shank and the thigh of 0.5m. There were walker configurations

that resulted in having a symmetric gait pattern when the center of masses for the shank

and thigh were at specific locations. Note that the left leg center of mass is changing

which forces the moment of inertia to change because of the single coupled mass on
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each link on the left leg. The goal of this test was to have a right leg and left leg with

different moment of inertias but a symmetric gait. Figures 3.7 through 3.9 show the most

symmetric solutions. Figure 3.7 shows the masses on the right leg shank are spread out

by 0.24m. The walker model will go back to symmetry when the masses on the left leg

thigh and shank are moved to 0.01m above the center of the center of the shank and thigh

links. Comparing Figure 3.7 to Figure 3.4 the reduction of the asymmetric gait pattern

is evident. The test with the largest asymmetry on the thigh (b2R = 0.25m) was able

to achieve symmetry when the coupled mass on the left shank is moved 0.17m below

the knee and the coupled thigh mass is moved to the center of the left thigh link (i.e.

a2L = 0.25m). This symmetry is seen in Figure 3.8. Once again, comparing Figure 3.8

to Figure 3.5, it is clear that the asymmetry has been eliminated. Looking at Figure 3.9,

it shows the symmetric solution to Figure 3.6. This symmetry occurs when the coupled

thigh mass was moved to 0.23m below the hip and the coupled shank mass was moved to

0.14m below the knee. These tests show that when an asymmetry arises from changing

the moment of inertia while keeping the center of mass constant on one leg, a symmetric

gait can be achieved with a certain moment of inertia and center of mass on the opposite

leg.

3.3.3 Trends of Changing Moment of Inertia on a Passive Dynamic Walker Model

Another interesting trend is how changing the moment of inertia on the left leg affects

the step length difference when the right leg is held constant. Using the data obtained

by changing c1L anda2L and holding the right leg constant with the link masses spread

apart at a distance that produced the largest asymmetries, I plotted the moment of inertia

for each leg versus the step length difference. Figures 3.10 through 3.12 shows both the

moment of inertia of the left and right legs versus step length difference and the three

dimensional plot of a2L versus c1L versus step length difference. Figure 3.10 occurs
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(b) Symmetric Limit Cycle Plot

Figure 3.7: The symmetric solution when the shank masses on the right leg are separated
by 0.24m. This symmetry happens when the left leg thigh and shank masses are
both positioned positioned at 0.01m above the center of the left leg shank and thigh
respectively.
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(a) Symmetric Step Length Plot
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(b) Symmetric Limit Cycle Plot

Figure 3.8: The symmetric solution when the thigh masses on the right leg are separated
by 0.25m. The symmetry occurs when the left leg shank mass is 0.17m below the knee
and the thigh mass is moved to the center of the thigh (a2L = 0.25m)
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(b) Symmetric Limit Cycle Plot

Figure 3.9: The symmetric solution when the thigh masses on both the shank and thigh
right leg are separated by 0.07m and 0.26m. This symmetry happens when the left leg
shank mass is moved 0.14m below the knee and the thigh mass is moved 0.23m below the
hip.
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when the right leg shank masses are separated by 0.24m and the center of mass location

is varied on the left leg. Figure 3.10a shows that as the moment of inertia of the left leg

(black dots) approaches 0.04 the step length difference increases. The solid vertical red

line is the constant moment of inertia of the right leg. An interesting result is when the

moment of inertia for both legs are equal there is still an asymmetry. This shows that

symmetric gait patterns rely both on center of mass and moment of inertia. Figure 3.10b

shows how c1L and a2L affect the step length difference when b1R = 0.24m. Looking at

Figure 3.11, this is when the right leg thigh masses are spread by 0.25m and c1L and a2L

are changing. Figure 3.11a is the moment of inertia of the left leg (black dots) versus the

step length difference. As seen in this figure, the moment of inertia of the left leg is de-

pendent on the location of mass. The location of the thigh and shank masses change with

c1L and a2L,which is depicted by the colored lines in Figure 3.11a. The green line in

Figure 3.11a shows when c1L = 0.25. At some instances when c1L = 0.25, the model is

very symmetric but as a2L increases the model becomes more asymmetric. Figure 3.11b

is the three dimensional plot of a1L versus c2L versus. step length difference. It shows

that there are a range of values of a1L and c2L that produce a symmetric gait pattern

given an altered moment of inertia. Figure 3.12 shows similar plots as Figure 3.11, but

the right leg shank and thigh mass are both spread out by 0.07m and 0.26m respectively

while still c1L and a2L are changed. All of these plots show that changing the moment of

inertia has a distinct impact on the symmetry of the walker.
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(a) Moment of inertia of the left leg when the right leg shank mass is spread out by 0.24m.
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(b) a2l and c1L versus Step Length Difference

Figure 3.10: The step length changing with different parameters when b1R = 0.24m.
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(a) Moment of inertia of the left leg when the right leg thigh mass is spread out by 0.25m.
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(b) a2l and c1L versus Step Length Difference

Figure 3.11: The step length changing with different parameters when b2R = 0.25m.
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(a) Moment of inertia of the left leg when the right leg shank and thigh mass are both spread out by
0.07m and 0.26m respectively.
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(b) a2l and c1L versus Step Length Difference

Figure 3.12: The step length changing with different parameters when b1R = 0.07m and
b2R = 0.26m.
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Chapter 4: Model Uses

The nine mass model can be applied to many applications. An interesting application I

found was to correct the asymmetry that emerges from having one leg longer than the

other by adding two masses to the opposite shank and thigh at a specific location. I also

created a model that is anatomically correct by comparing the nine mass model to human

anthropomorphism. Using this anthropomorphic model, I looked at prosthesis design and

created a theoretical transfemoral prosthetic limb. This prosthetic is lighter and produces

a more symmetric gait pattern than today’s prostheses. The nine mass model is also being

used to design and tune a physical passive dynamic walker. These are just some of the ap-

plications I have worked with to date. The possibilities are endless with what this model

could be applied to, especially in the field of gait rehabilitation.

4.1 Correcting a Longer Leg’s Asymmetry by Adding Mass

The nine mass model has the ability to vary a large amount of parameters. I used this

ability to test if the natural asymmetry that arises from having one leg longer than the

other can be diminished by adding a mass to the shank and thigh. From [11], I found that

having one leg significantly longer than the other produces a very large asymmetry. The

goal of this test is to reduce the asymmetry by adding a changing mass with changing

position on the opposite shank and thigh. To create this test I had to change five different

parameters, which is more than any other test described in this thesis. In this test, I made

the right leg range from the original length of 1m to 1.05m. To correct the asymmetry
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that arises, I started with the five mass system and used the extra two masses (ms2L

and mt2L) on the left leg as added gait correcting masses. The magnitude and location

was changed for the added masses on the left leg, making for five different parameters

changing. The magnitudes range from 0 to 25% of the normal shank and thigh mass. The

location of each mass spans the whole length of the individual link. Once again, a walker

configuration was considered successful if it was able to walk fifty steps.

This test produced an abundance of interesting gait data. For one, 99.3% of the pass-

ing walking configurations had the added thigh mass (mt2L) equaling 0.025kg. This

is because the mass of the thigh has a large effect on the symmetry of the walker [11].

Figure 4.1 shows holding mt2L constant at 0.025kg and plots the length of the right leg

versus the step length difference. An interesting trend in this figure is when the right leg

is 1.03m or less, the walker is able to achieve a symmetric gait.

There were two different leg lengths I was interested in, when the right leg is the longest

(LR = 1.05m) and when LR = 1.02m. I chose LR = 1.02m because it has many

symmetric solutions (Figure 4.1) while still maintaining a right leg that is noticeably
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Figure 4.1: The plot of mt2L versus step length.
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longer than the left leg. When looking at Figure 4.1, it can be seen that a right leg equal-

ing 1.05m does not have any symmetric configurations but has some that are very close.

Figure 4.2a shows ms2L versus step length when the right leg is 1.02m long. For all

values in this plot mt2L is constant at 0.025kg. It is apparent that the step length changes

with another parameter besides ms2L. In Figure 4.2b, b1L versus b2L versus step length

is plotted. This shows how changing the locations of the masses affects the symmetry

of the model. A trend for this plot is that the position of the added thigh mass (b2L) has

a large effect on the step length difference. For values of b2L below 0.2m the model is

symmetric for the whole range of values for b1L. The most symmetric solution for a

LR = 1.02 occurs when mt2L = 0.025kg, b2L = 0.25m, ms2L = 0.0025kg, and

b1L = 0.1m. Conceptually, this means that the added thigh mass is directly on top of

the knee. The symmetry for this configuration can be seen in Figure 4.3. The step length

plot is seen in Figure 4.3a and the limit cycle plot is seen in Figure 4.3b. When looking

at Figure 4.2b, there is one configuration that has the largest asymmetry. Interestingly

the largest asymmetry and the smallest asymmetry have the same location of the added

thigh mass (b2L = 0.25m), with the mass directly on top of the knee. Over 13% of all

passing configurations exhibit this trait of having b2L equaling 0.25m. The added mass

on the shank increased from the symmetric configuration (ms2L = 0.0025kg) to the most

asymmetric (ms2L = 0.01kg) and the location of the mass moved down to the bottom of

the shank, creating a foot mass. This asymmetry can be seen in Figure 4.4.

When the right leg is 1.05m, the model does not exhibit many stable gait patterns. This is

because having a leg 0.05m longer than the other leg develops a very large asymmetry

and the changing parameters on the shorter leg does not have a large enough effect to

overcome the asymmetry. I could have varied more parameters like adding weights to

the longer leg and changing the hip mass. This could be something interesting to analyze

in the future.
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(a) This figure shows the ms2L versus step length difference.
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(b) This figure b1L versus b2L versus step length.

Figure 4.2: This plot shows the gait dynamics when the right leg is 1.02m long.
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(a) The step length plot when the right leg is
1.02m.
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(b) The limit cycle plot when the right leg is
1.02m.

Figure 4.3: The symmetric solution when the right leg is 1.02m. This happens by
adding a mass on the left leg shank and thigh with a magnitude of 0.0025kg and 0.025kg
respectively. The mass on the thigh is located on the knee (b2L = 0.25m) and the shank
mass is 0.1m above the center of the shank
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(a) The step length plot when the right leg is
1.02m.
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(b) The limit cycle plot when the right leg is
1.02m.

Figure 4.4: The configuration with the largest asymmetry when the right leg is 1.02m.
This asymmetry arises when the thigh and shank mass on the left leg are 0.025kg and
0.01kg respectively. The thigh mass stays on the knee and the shank mass moves down to
the bottom of the shank, creating a foot mass.
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Figure 4.5a shows ms2L versus step length difference. Similar to when LR = 1.02m,

this plot shows LR = 1.05m and holds mt2L constant at 0.025kg, because mt2L does

not change for all passing values when LR = 1.05m. It can also be seen in Figure 4.5a

that the step length is being changed by another parameter besides ms2L. Figure 4.5b

plots b1L versus b2L versus step length. In this plot there is a line that has a b2L = 0m

and a changing b1L, all with very low asymmetries. There is also a large gap between

the line of symmetry and the rest of the working configurations; between b2L of 0m to

0.175m, there are no working configurations. This is due to the fact that the thigh is very

sensitive to added mass, especially in the middle of the link [11]. So the added thigh mass

creates a passing configuration when it is located at the extremes of the thigh, at the hip or

close to the knee. Also, Figure 4.5b shows how the value of b1L drives the symmetry and

success of the walker. When b2L is approximately 0.25m and b1L is small, the model has

a small asymmetry, but as b1L increases the asymmetry increases. The most symmetric

solution occurs when the added thigh mass (mt2L) is 0.025kg, it is located at the center

of the link (b2L = 0.00m), the added shank mass (ms2L) is 0.0025kg, and it is located

0.1m below the knee (b1L = 0.15m). Figure 4.6 shows the asymmetry and gait dynamics

for the smallest asymmetry when LR = 1.05m. In Figure 4.5b, the largest asymmetry

occurs when mt2L = 0.025kg, b2L = 0.25m, ms2L = 0.01kg, and b1L = 0.2m.

This asymmetry is seen in Figure 4.7. With a right leg length of 1.05m, the model cannot

produce a symmetric gait, but with the parameters changing the model can come close to

symmetry.

This test showed that the asymmetry from having one leg longer than the other can be

reduced. The results from this test will do nothing to align the joints of an individual with

one leg that is longer than the other. However, the ability to reduce the natural asymmetry

will help alleviate joint pain and the energy used while walking [20][14]. I was able to

find symmetric solutions to a leg that is 0.03m longer than the normal leg. A leg that is

0.03m longer than the normal leg is significant and would be a large impairment for an
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(a) This figure shows the ms2L versus step length difference.
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(b) This figure b1L versus b2L versus step length.

Figure 4.5: These plots show the gait dynamics when the right leg is 1.05m long.
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(a) The step length plot when the right leg is
1.05m.
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(b) The limit cycle plot when the right leg is
1.05m.

Figure 4.6: The symmetric solution when the right leg is 1.05m. The most symmetric
solution happens when the left leg has a thigh mass equaling 0.025kg and is located at the
center of the thigh and has a shank mass of 0.0025kg and is located 0.1m below the knee.
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(a) The step length plot when the right leg is
1.05m.
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(b) The limit cycle plot when the right leg is
1.05m.

Figure 4.7: The configuration with the largest asymmetry when the right leg is 1.05m.
This large asymmetry occurs when the left leg thigh mass is 0.025kg and the shank mass
is 0.01kg. The thigh mass is at the knee and the shank mass is located at 0.05m above the
bottom of the shank

47



individual with such a problem. As interesting as this data is, it still can be improved by

changing more parameters and having the initial parameter conditions be anatomically

correct.

4.2 Anthropomorphic Model

To better describe the human gait and test rehabilitation methods, I have derived an an-

thropomorphic model based upon the nine mass model. Figure 4.8 shows the mass lo-

cations for the anthropomorphic model. It is essentially a seven mass model because I

coupled the two thigh masses into one large mass. To create this model, I used human

anthropomorphic data found in [5]. I took the values given in the anthropomorphic data

and varied them until I found a symmetric gait pattern. The values for the given anthro-

pomorphic masses and the derived model masses are in Table 4.1. It can be seen that the

two masses that needed to be changed to achieve symmetry are the mass of the thigh and

the mass of the shank. Table 4.2 shows the location of each mass. The first column is

the given mass location from the anthropomorphic data. It describes the center of mass

location from the proximal endpoint. This is where the center of mass is located on the

current link from the center of mass on the link before. The second column is the cal-

culated length for the walker and the third column is the mass location on the walker.

Note that the calculated length for the hip is zero because it does not have a distance

from a previous link, it is located at the top of the walker. Also, the position of the foot

is not based on the anthropomorphic data. It is placed at the bottom of the walker and the

length to the foot is the length of the shank minus the length of the shank mass location

(0.285 = 0.5m−0.2165m). This model was created to aid in the testing of rehabilitation

methods.
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Figure 4.8: The anthropomorphic model. This shows the anthropomorphic model that
was derived to better represent human leg mass.
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Table 4.1: Anthropomorphic Model Mass

Mass of Mass of Mass of Mass of
Hip (kg) Thigh (kg) Shank (kg) Foot (kg)

Given Masses 0.532 0.115 0.044 0.019
Derived Model 0.532 0.315 0.1 0.019

Table 4.2: Anthropomorphic Model Mass Locations

Walker Center of Mass Calculated Model
Parameter Location From Length (m) Location

Proximal Endpoint

Hip 0.54 0 At Top of Walker
Thigh 0.433 0.2165 From Hip
Shank 0.433 0.2165 From Knee
Foot 0.429 0.2385 From Shank Location

4.3 Prosthetic Model

Using the anthropomorphic model, I derived a theoretical transfemoral prosthetic limb.

I assumed that one third of the thigh has been removed above the knee. This makes the

stump mass two thirds the mass of the intact thigh and it is also two thirds of the length.

In the model, the prosthetic thigh and shank both have changing masses and lengths to

find the optimal values for the knee location, prosthetic shank mass, prosthetic thigh

mass, and a symmetric gait. The intact leg is exactly the same as the anthropomorphic

model. Figure 4.9 shows the prosthesis model with the mass locations. The model has

one thigh mass representing the center of mass of the stump mass and the other thigh

mass representing the center of mass for the prosthetic thigh. Even though the length of

the prosthetic thigh changes, the model is set up to keep the mass in the center for every

iteration. A point mass on the shank was used to represent the prosthetic shank center

of mass. Once again the model was set up to keep the mass at the center of the shank

with the changing length of the shank. The foot mass is represented by a point mass on

the bottom of the model prosthetic limb. Looking at Figure 4.9, the masses are from top
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to bottom: dark grey represents the stump mass, red is the prosthetic thigh, green is the

prosthetic shank, and blue is the prosthetic foot. Also, notice how the knee line for the

intact leg and prosthetic leg differ.

4.3.1 Prosthetic Model Results

This model of a transfemoral prosthesis is used in this thesis to break the assumption that

the prosthetic knee location should be located in the same location as the existing knee.

Here, I describe three different prosthetic model configurations. The first is a baseline

where the intact knee and prosthetic knee are in the same location. For the model to walk

symmetrically, the total mass of the prosthetic leg had to increase by 2%. For this 2% leg

mass increase, the prosthetic thigh increased by 17% and the prosthetic shank decreased

by 38%. This data is shown in the first row of both Tables 4.3 and 4.4 and the symmetry

can be seen in Figure 4.10. For the second test, I was able to achieve a stable symmetric

gait when the prosthetic knee was moved down by 36.7% in relation to the intact knee.

In doing this I reduced the prosthetic shank mass by 68% and the prosthetic thigh mass

increased by 7.3%. This resulted in a total mass reduction of 13.4%. The results from this

test can be seen in the second row of both Tables 4.3 and 4.4 and the symmetry in Fig-

ure 4.12. Even though 13.4% total mass reduction is not dramatic, the prosthetic shank

mass decreased drastically. Mattes et al. discuss that lowering the mass prosthetic shank

is very important for energy cost reduction [14].

Individuals who wear prostheses commonly have an asymmetry where their prosthetic

leg has a longer step length than their intact leg [14]. The first two tests have shown that

a symmetric gait can be achieved with a transfemoral prosthesis when either the weight

is increased or more importantly the knee is moved. For the third test, I went past the

normal asymmetry of a prosthesis where a prosthetic leg has a longer step length than

the intact leg to make the prosthetic leg have a shorter step length than the intact leg. This
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Figure 4.9: The prosthesis model. This shows the prosthesis model that was derived to
better represent a transfemoral prosthetic leg.
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configuration would mean that the prosthetic leg is overcompensating for the asymmetry

that the wearer of the prosthesis is likely to develop. To get this gait pattern the knee

had to be moved down by 42.8% in relation to the intact knee. This caused a 63% mass

reduction in the prosthetic shank and 2% reduction in the prosthetic thigh mass, giving

a total prosthesis mass reduction of 19%. The results in the third test can be seen in the

third row of both Tables 4.3 and 4.4 and the asymmetry in Figure 4.12. This test shows

that the model can theoretically tune a prosthetic leg to be lighter than the intact leg while

overcompensating for the wearer’s developed asymmetry.

Table 4.3: Prosthesis Model Mass Results

Configuration Thigh Mass Change Shank Mass Change Total Mass Change

Heavier Symmetric 17% increase 38% decrease 2% increase
Lighter Symmetric 7.3% increase 68% decrease 13.4% decrease
Lighter Asymmetric 2% decrease 63% decrease 19% decrease

Table 4.4: Prosthesis Model Knee Location Results

Walker Configuration Knee Location Change

Heavier Symmetric 0
Lighter Symmetric 36.7% down
Lighter Asymmetric 42.8% down

4.4 Physical Walker

The nine mass model can also be used to design and tune a physical passive dynamic

walker (PDW). In [10] there is research being done to create the physical PDW seen

in Figure 4.13. The nine mass model has aided in the design and tuning of the PDW.

To use the nine mass model for design and tuning, a model that describes the physical

walker had to be created. To do this a three dimensional model of the physical walker

had to be constructed using Solid Works. The three dimensional Solid Works model is
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(a) Step length plot for the prosthesis model when the total mass is heavier and the
gait patten is symmetric.
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(b) Limit cycle plot for the prosthesis model when the total mass is heavier and the
gait patten is symmetric.

Figure 4.10: The prosthesis symmetric gait pattern when the mass is heavier than the
intact leg. This occurs when the prosthetic knee is in same location as the intact knee.
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(a) Step length plot for the prosthesis model when the total mass is lighter and the gait
patten is symmetric.

−0.4 −0.2 0 0.2 0.4 0.6
−4

−2

0

2

4

Angle (rads)

A
ng

le
 (

ra
ds

/s
)

A
ng

ul
ar

 v
el

oc
ity

(b) Limit cycle plot for the prosthesis model when the total mass is lighter and the
gait patten is symmetric.

Figure 4.11: The prosthesis symmetric gait pattern when the mass is lighter than the
intact leg. This occurs when the prosthetic knee is moved down from the intact knee
location by 36.7%. By doing this I have shown that moving the knee location can produce
a symmetric gait with a lighter prosthesis
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(a) Step length plot for the prosthesis model when the total mass is lighter and the gait
patten is asymmetric.
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(b) Limit cycle plot for the prosthesis model when the total mass is lighter and the
gait patten is asymmetric.

Figure 4.12: The prosthesis asymmetric gait pattern when the mass is lighter than the
intact leg. This occurs when the prosthetic knee is moved down from the intact knee
location by 42.8%. This goes past symmetry and creates an asymmetry that is opposite
of a individual who wears a prosthetic.
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Figure 4.13: The picture of the physical walker. This is taken from [10]

seen in Figure 4.14. In the Solid Works model, different parts of the leg were coupled

to create four large parts. The center of mass of these large parts were found using the

Solid Works Mass Properties tool. These four center of masses represent the specific

masses in the nine mass model. To check to make sure the masses and their locations

were correct, the moment of inertia was calculated for the legs of the physical walker,

the Solid Works model, and the physical walker model [10]. The moment of inertias of

the three models were all within tolerances to prove that the locations in the theoretical

model were correct.

The physical walker model did not have a steady and stable gait pattern when it was ini-

tially created. To correct for this unstable gait, different parameters were changed by

a brute force search method until a stable gait was found. The results from this testing

showed that the thigh and hip mass needed to be increased to produce a more stable gait.

So weights were added to the physical PDW and the Solid Works model. Once again,
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Figure 4.14: The Solid Works drawing the physical walker. This is taken from [10]

the centers of masses were found and checked in the physical walker model to make sure

symmetry and stability were achieved [10].

The design and testing of the physical PDW is discussed in great detail in [10]. The au-

thor discusses the tuning of a physical passive dynamic walker and how it is a tedious

and arduous task. This requires patience and a deep understanding of how the variables

influence the stability of a physical PDW.
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Chapter 5: Conclusions and Future Work

5.1 Conclusions

This research is an expansion of previous mathematical models that describe a passive

dynamic walker (PDW). The current nine mass model allows for more adjustability, ver-

satility, and better approximates the mass distribution of human legs. I have shown that

the nine mass model is an improvement over its predecessor, the five mass model, which

forces the center of mass to change with the moment of inertia. However, the nine mass

model allows the center of mass and the moment of inertia to be changed independently

of one another. Being able to adjust the mass locations for any specific walker combina-

tion allowed me to diminish the asymmetry that arises from having one leg longer than

the other, derive the anthropomorphic model, create a theoretical prosthesis, and aid in the

tuning of a physical PDW.

When an individual has one leg that is longer than the other, a large asymmetry arises. I

found that adding a mass to the opposite leg’s shank and thigh at a certain location would

reduce the asymmetry. This is because the added masses are altering the dynamics of the

normal leg enough to diminish the large asymmetry produced by the longer leg.

The anthropomorphic model describes the location and magnitude of the center of mass

for each part of the human leg. This will better express the mass distribution of human

legs and will aid in the testing of rehabilitation methods. The values for the locations and

magnitudes of the center of masses were varied slightly to achieve a steady and stable
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gait. The anthropomorphic model is important for modeling the theoretical transfemoral

prosthesis that I described earlier. This prosthetic model breaks the assumption that the

prosthetic knee needs to be in the same location as the intact knee. I was able to obtain a

68% decrease in the prosthetic shank and a 13.4% decrease in the total prosthetic mass

while maintaining a symmetric gait pattern. This is accomplished by moving the location

of the prosthetic knee below the location of the intact knee.

The nine mass model is also used to design and tune physical PDWs. Because of its large

amount of adjustability of the model, it is easy to test a new design configuration before it

is implemented on the physical PDW. This reduces the time spent in the tuning phase of

physical PDW development.

This thesis showed the derivation of the nine mass model and some of the applications

that it could be used for. The nine mass model is an improvement over the five mass

model and has shown merit for rehabilitation because of the applications discussed in

this thesis. The nine mass model will be further used for gait rehabilitation research, the

design of rehabilitation devices and methods, and the design of physical PDWs.

5.2 Future Work

It has been shown that the nine mass model can be used for the application of gait reha-

bilitation design and testing. I have shown what rehabilitation methods I have tested and

in this section, I will propose some other rehabilitation research that the nine mass model

could be applied to in the future. The nine mass model could be extended to analyze

how the joint torques affect the stress on the joints. This model could also be used to

examine how spasticity, the tightness in the muscles arising from a stroke [19], affects

gait patterns. Also, it would be important to validate the changing gait dynamics of the

walker against a human participant.
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5.2.1 Joint Torques

Prosthesis wearers tend to have joint pain and large amounts of stress at the prosthetic

socket [22]. One cause of this discomfort is the asymmetry that is created from the pros-

thetic limb. The nine mass model could be adapted to analyze the forces and torques dur-

ing walking. This could be done by summing the moments at the foot or the hip. There

are two forces on the system, the force due to gravity (weight of the model) and the angu-

lar acceleration the model has during the dynamics. Similar to the optimization demon-

strated in this thesis to reduce the asymmetry, the forces due to the angular accelera-

tion could be optimized to reduce the torque on the joints and the stress at the prosthetic

socket.

5.2.2 Spasticity

Spasticity is described as velocity dependent resistance to stretch or unusual tightness

in muscles. This sometimes occurs in individuals who have suffered strokes [19]. This

tightness could be implemented in the nine mass model to test rehabilitation methods

to alleviate the asymmetry that arises from spasticity. To mimic the muscle tightness of

spasticity, a velocity dependent damper and position dependent rotational spring could be

applied to one of the knees and/or the hip. The following equation would describe this:

(Ji + Ja)q̈ + (bi + bs)q̇ + (ki + ks)q = 0 (5.1)

where Ji is the inherent moment of inertia at the specific joint, Ja is the added moment

of inertia that arises from adding or changing masses. The damping parameters bi and bs

are the rotational damping constants for the inherent damping in the joint and the added

rotational damping for spasticity. The stiffness parameters ki and ks are the rotational
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spring stiffness inherent in the joint and the added stiffness for spasticity. In the current

work being done, bi = ki = 0. The inherent terms are need to model the inertia, damping,

and stiffness present in the physical leg that is being simulated. The angular acceleration,

velocity, and position are described by q̈, q̇, and q respectively.

Similar to other tests presented in this paper the asymmetry that arises from the spring

and the damper would be reduced by changing other parameters in this model.

5.2.3 Human Validation

Another important aspect for the nine mass model is comparing the motion of human

walking to the dynamics described by the model. Some research has showed that increas-

ing the mass and height of the foot on a participant will force the individual to curve to-

ward the modified foot [10]. This means that the leg with the modified foot has a shorter

step length. This agrees with the research done on the five mass passive dynamic walker

model described in [11]. Further comparisons need to be made, for example comparing

the prosthetic model to an individual who wears a prosthesis.
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Appendix A: Five Mass Model Derivation

For reference I have derived the five mass model dynamics. A portion of the derivation

is also discussed in [11]. Similar to the nine mass model, the five mass model has two

distinct phases in its dynamics: the two-link phase and the three-link phase. The five mass

model’s dynamics are derived using the Lagrangian formulation for a muti-pendulum

system (A.1).

H(q)q̈ +B(q, q̇)q̇ +G(q) = 0 (A.1)

The three matrices in this equation H , B, and G are the inertia, velocity, and gravity

matrices respectively.

A.1 Three-Link Dynamics

The three-link dynamics are described in the following equations by deriving the three

Lagrangian matrices for a three-link pendulum system, similar to how it was done for the

symmetric PDW in [1]. The matrices are as follows:

H11 = mssta1
2
st +mtst(lsst + a2st)

2 +

(mh+mssw +msw)L
2
st (A.2)

H12 = −(mtswb2sw +msswltsw)Lst cos(q2 − q1) (A.3)

H13 = −msswb1swLst cos(q3 − q1) (A.4)

H21 = H12 (A.5)
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Appendix A: (continued)

H22 = mtswb2
2
sw +msswlt

2
sw (A.6)

H23 = msswltswb1sw cos(q3 − q2) (A.7)

H31 = H13 (A.8)

H32 = H23 (A.9)

H33 = msswb1
2
sw (A.10)

H =


H11 H12 H13

H21 H22 H23

H31 H32 H33

 (A.11)

h122 = −(mtswb2sw +msswltsw)Lst sin(q2 − q1) (A.12)

h133 = −msswb1swLst sin(q3 − q1) (A.13)

h211 = −h122 (A.14)

h233 = msswltswb1sw sin(q3 − q2) (A.15)

h311 = −h133 (A.16)

h322 = −h233 (A.17)

B =


0 h122q̇2 h133q̇3

h211q̇2 0 h233q̇3

h311q̇1 h322q̇2 0

 (A.18)

g1 = −(mssta1st +mtst(lsst + a2st) +

(mh+mssw +mtsw)Lsw) sin(q1)g (A.19)
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Appendix A: (continued)

g2 = (mtswb2sw +msswltsw) sin(q2)g (A.20)

g3 = msswb1sw sin(q3)g (A.21)

G = [g1 g2 g3]
T (A.22)

A.2 Two-Link Dynamics

The two-link dynamics are described by the Lagrangian of a double pendulum system.

The matrices are as follows:

H11 = mssta1
2
st +mtst(lsst + a2st)

2 +

(mh+mssw +mtsw)L
2
t (A.23)

H12 = −(mtswb2sw +mssw(ltsw +

b1sw))Lst cos(q2 − q1) (A.24)

H21 = H12 (A.25)

H22 = mtswb2
2
sw +mssw(ltsw + b1sw)

2 (A.26)

H =

 H11 H12

H21 H22

 (A.27)

h = −(mtswb2sw +mssw(ltsw + b1sw))Lst sin(q2 − q1) (A.28)

B =

 0 hq̇2

−hq̇1 0

 (A.29)
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Appendix A: (continued)

g1 = −(mssta1st +mtst(lsst + a2st) +

(mh+mssw +mtsw)Lsw) sin(q1)g (A.30)

g2 = (mtswb2sw +mssw(ltsw + b1sw)) sin(q2)g (A.31)

G = [g1 g2]
T (A.32)

A.3 Collision Events

In [11] only the dynamics were derived the collisions were omitted due to space limita-

tions. I am showing the derivation of the five mass model collisions for reference.

The following equations take the pre-collision velocities (q−) and apply conservation of

angular momentum and output the post-collision velocities (q+). It is to be noted that the

superscript + is post-collision and − is pre-collision.

A.3.1 Knee Strike

 q̇1
+

q̇2
+

 = Q+−1


q̇1

−

q̇2
−

q̇3
−

Q− (A.33)

α = q1 − q2 (A.34)

β = q1 − q3 (A.35)

γ = q2 − q3 (A.36)

Q+
11 = Q+

21 +mtst(lsst + a2st)
2 + (mh+mtst +msst)L

2
st +mssta1

2
st (A.37)
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Appendix A: (continued)

Q+
11 = Q+

21 +mssw(ltsw + b1sw)
2 +mtswb2

2
sw (A.38)

Q+
21 = −(mssw(b1sw + ltsw) +mtswb2sw) cosα (A.39)

Q−
11 = −(msswltsw +mtswb2sw)Lst cos(α)−msswb1swLst cos(α) +

(mtsw +mssw +mh)L2
st +mssta1

2
st +mtst(lsst + a2st)

2 (A.40)

Q−
12 = −(msswltsw +mtswb2sw)Lst cos(α) +msswb1swltst cos(γ)+

mtswb2
2
sw +msstlt

2
sw

(A.41)

Q−
13 = −msswb1swLst cos(β) +msswb1swltsw cos(γ) +msswb1

2
sw (A.42)

Q−
21 = −(msswltsw +mtswb2sw)Lst cos(α)−msswb1swLst cos(β) (A.43)

Q−
22 = msswb1swltsw cos(γ) +msswlt

2
sw +mtswb2

2
sw (A.44)

Q−
23 = msswb1swltsw cos(γ) +msswb1

2
sw (A.45)

Q+ =

 Q+
11 Q+

12

Q+
12 Q+

22

 (A.46)

Q− =

 Q−
11 Q−

12 Q−
13

Q−
12 Q−

22 Q−
23

 (A.47)

A.3.2 Heel Strike

q+ =


q−2

q−1

q−1

 (A.48)
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Appendix A: (continued)


q̇1

+

q̇2
+

q̇3
+

 = Q+−1

 q̇1
−

q̇2
−

Q− (A.49)

q̇+3 = q̇+2 (A.50)

α = q1 − q2 (A.51)

Q+
11 = Q+

21 + (mssw +mtsw +mh)L2
sw +msswa1

2
sw+

mtsw(a2sw + lssw)
2

(A.52)

Q+
12 = Q+

21 +msst(b1sw + ltsw) +mtswb2
2
sw (A.53)

Q+
21 = −(msst(b1st+ ltst) +mtstb2sw)Lsw cos(α) (A.54)

Q+
22 = mssw(ltsw + b1sw)

2 +mtswb2
2
sw (A.55)

Q−
11 = Q−

12 + (mhLst + 2mtst(a2st + lsst) +mssta1st)Lst cos(α) (A.56)

Q−
12 = −(msswa1sw(ltsw + b1sw) +mtswb2sw(lssw + a2sw)) (A.57)

Q−
21 = Q−

12 (A.58)

Q−
22 = 0 (A.59)

Q+ =

 Q+
11 Q+

12

Q+
12 Q+

22

 (A.60)

Q− =

 Q−
11 Q−

12

Q−
12 Q−

22

 (A.61)
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