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1 Introduction

Kinematic synchronization of systems is the matching of motion between two moving
systems. The synchronization of any two rotating systems can be as simple as physically
placing a joining spring or damper between the systems or may require sophisticatedly
controlled actuators that augment natural system dynamics. Here, we focus on dissimilar
rotating systems without any physical coupling. Our passive kinematic matching
technique allows two independent systems to generate the same motion without any
physical system coupling or actuator control law. To validate this method, this passive
synchronization technique is applied to two open-ended rotating kinematic chains: single-
and double- link pendulums with di↵erent masses at di↵erent mass locations along links.
Even though double-link pendulums are highly nonlinear systems that are sensitive to
changes in initial conditions and system parameters, our passive matching technique
enables the same generated motion on dissimilar double-link pendulums.

The practical application of such a passive matching technique is the flexibility in
mechanical design as one is able to describe the same kinematics with a variety of
parameters (i.e., masses and mass distributions). In essence, one is able to decouple
the mass and the first moment and second moment of inertia so systems with dissimilar
masses and mass distributions will have the same motion. For example, the motion of a
double-link pendulum modeled as two links with one mass per link can only be described
by one unique combination of masses and mass locations along the links. However,
having two masses per link allows the kinematics to be described with an infinite number
of distinct systems with distinct masses and mass distribution that all have the same
resulting motion. In fact, the minimum number of masses per rotating link to describe
any arbitrary rotational kinematics is two masses, yet many models only include one
mass. Using only one mass per link inherently couples the moments of inertia so that
any change in the location of the mass necessarily a↵ects both the first and second
moments of inertia.

The modeling method to derive our synchronization technique can be used to simplify
complicated rotational kinematics problems by simplifying the dynamics model of the
system by assuming a finite distribution of point masses along swinging members. For
example, the rotation of a fan blade can be represented with two masses distributed
as specified using this method instead of finding detailed masses, mass distributions,
or moments of inertias of the continuous system. This type of modeling can also be
applied to human or robotic limbs and in prosthesis design. It is stressed that this
point-mass modeling technique is not novel, however is used to develop our novel passive
synchronization method that matches the rotational kinematics of two dissimilar and
uncoupled rotational systems.

The only requirements for our passive kinematic synchronization of dissimilar systems
are: identical degrees of freedom, initial conditions, and torques applied to the systems.
These same requirements are also needed to cause two identical systems to have the same
motion.

In the proceeding sections we will derive the essential and general model for an
open-ended multi-degree of freedom rotational system, define the kinematic matching
coe�cients needed for system synchronization, and outline the step-by-step instructions
on how to passively match the kinematics of newly created or already available systems.

We further form two examples providing proof and application of this system
representation and unique passive matching method of dissimilar systems by
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mathematically and experimentally analyzing three dissimilar one-degree-of-freedom
systems and also two dissimilar two-degree-of-freedom systems.

2 Background

2.1 Coupled Synchronization

In 1657, in the quest to improve nautical navigation, Dutch mathematician Christiaan
Huygenes invented the first pendulum clock [2]. Pendulum clocks were astounding
mechanisms of their day. An interesting aspect is that they tend to synchronize and
operate in phase or anti-phase when hung on the same wall with another pendulum
clock. He deduced that the clocks were coupled by their common supporting structures
which transferred small movements between clocks. This clock can be considered the
first observation of a synchronized coupled oscillator.

The kinematic synchronization of two or more coupled mechanical systems such as
Huygen’s clock has been extensively studied since the time of Huygen himself. More
recent such studies include the synchronization of coupled nonlinear oscillators [3],
analysis of coupled multi-pendulum systems [5], and synchronization of double
pendulums under the e↵ects of external forces [18]. Osipov et al. [24] published a
thorough review on synchronization in oscillatory networks, which mainly discusses
di↵erent aspects of synchronization in chains and lattices of interconnected oscillatory
elements.

As part of the rise of faster computing power came the ability to actively synchronize
coupled mechanical systems with linear, nonlinear, passivity-based, or active control
laws. There are hundreds of publications which demonstrate such control laws, some of
these publications are on controlled motion synchronization for gyroscopes [23], inverted
pendulum systems [22], and chaotic systems [19].

2.2 Uncoupled Synchronization

Passive kinematic synchronization of physically uncoupled systems has been studied
significantly less and the authors were only able to find two examples of uncoupled
passive synchronization, both of which are rooted in sports science.

A golfer’s technique as well as familiar equipment play an essential role in a golfer’s
performance. It is for this reason that all golf clubs in a set are matched (synchronized)
statically and dynamically, so when swung, each club behaves and feels the same to
the golfer [1]. Statically a golf club is matched by simply balancing it on a fulcrum,
however dynamically matching the golf club can be achieved by matching the moment
of inertia for each club in the set about the swinging axis [4]. Jorgensen presents a golf
club dynamic synchronization technique by modeling the swing arm and golf club and
matching overall moments of inertia about the wrist axis [17]. In these examples the
kinematics of each uncoupled system (golf club) is synchronized given the same input
torque (the golfer’s swing). While this technique of golf club matching is practical in
its specific application, it lacks generalization and flexibility to apply to other rotating
systems to be synchronized.

Although very little can be found in the field of passive synchronization of uncoupled
systems, a generalized passive synchronization method for physically uncoupled rotating
systems has practical implications for locomotion robotics, lower limb gait analysis, and
prosthetics. For instance, an individual’s walk can largely be modeled as two inverted
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Figure 1: (a) General Rotating System Model. (b) The general rotating systems model can

be adjusted to represent various configurations for rotating systems. These configurations can

represent a sea-saw/rotor, double pendulum, cam, or a continuous mass distribution along

rotating members.

pendulums (left and right step) rotating about the stance foot and progressing down a
decline with gravity as the only source of energy [20]. Such models are called passive
dynamic walkers (PDW) and have been shown to predict certain aspects of human
gait dynamics [7, 13, 14]. Honeycutt et. al [16] used a brute force search through a
numerical PDW model to show that asymmetric limbs can have symmetric kinematics,
and moving a prosthetic knee joint lower while lowering the prosthetic mass can result
in a spatially symmetric gait. Gregg [10, 11] examined symmetry from the other point
of view by finding symmetric PDW parameters that yielded asymmetric kinematics. A
leg synchronization technique for PDWs, general walking robots, and individuals can
be helpful to design and implement devices and methods which either even out gait
asymmetries [8], or intentionally exaggerate gait asymmetries for rehabilitation [12, 25].
These gait asymmetries can also arise from the asymmetric size and weight of a prosthetic
limb [15].

3 Passive Kinematic Synchronization Technique Derivation

This section outlines the equations used to derive the kinematics of a two-dimensional
general rotating system essential for our passive synchronization method. Subsequently
we will use this generalized model to draw out a method to synchronize two or more
dissimilar rotating systems with the same degrees of freedom, initial conditions, and
torque input.
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3.1 General Rotating System Model Description

We begin by deriving the equation of motion for a general rotating system with ň degrees
of freedom and m̌ masses per degree of freedom. Variable notation m symbolizes each
individual mass whereas m̌ symbolizes the total number of masses per rotating member
(or link). This generalized model is shown in Figure 1a, and can be described using
Lagrangian mechanics where the Lagrangian is defined as the di↵erence of kinetic and
potential energy. Note that this following formulation of the generalized equation of
motion is not novel, however it is used in the subsequently described kinematic matching
technique.

L(✓, ✓̇, t) = K(✓, ✓̇, t)� U(✓, t) (1)

To find the equation of motion, the Euler-Lagrange expression is applied.

d

dt

 
@L(✓, ✓̇, t)

@✓̇1,2...ň

!
=

@L(✓, ✓̇, t)

@✓1,2...ň
(2)

Equation (2) produces ň equations for ň degrees of freedom of the system. After
di↵erentiating and collecting coe�cients, the equations of motion of this general dynamic
system is a set of ň number of first order nonlinear ordinary di↵erential equations shown
in matrix coe�cient form in Equation (3).

[M ] ⇥̈ + [N ] ⇥̇2 + [G] = [T ] (3)

Where the coe�cient matrices [M], [N], and [G] are given in Equations (4), (7), and (8),
respectively. [M] is the inertia matrix coe�cient, [N] is the velocity matrix coe�cient,
and [G] is the position/gravity coe�cient matrix. [T] can represent any applied or non-
conservative torque functions applied to the system such as actuator torque, joint friction
torque, or air resistance experienced by a swinging member.

[M ]ň,ňsym =

2

6666664

M1,1 M1,2 cos(✓1 � ✓2) · · · M1,j cos(✓1 � ✓j)

M1,2 cos(✓1 � ✓2) M2,2

...
...

. . . Mi�1,j cos(✓i�1 � ✓j)

M1,j cos(✓1 � ✓j) · · · Mi,i

3

7777775

(4)
Here, each of the coe�cients on the diagonal are given by

Mi,i =
m̌X

p=1

l

2
i,pmi,p + l

2
i

ňX

q=i+1

m̌X

p=1

mq,p (5)

and the remaining non-diagonal coe�cients are given by

Mi,j = li

"
m̌X

p=1

lj,pmj,p +

(
lj
Pň

q=j+1

Pm̌
p=1 mq,p j < ň

0 j � ň

#
. (6)

The subscripts i and j represent the matrix entry indexes for matrix row and matrix
column, respectively.
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ňX

q=i+1

m̌X

p=1

mq,p) sin(✓i)

...
m̌X

p=1
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These are the coe�cient matrices for the equations of motion of a general rotating
system model with ň degrees of freedom and m̌ masses per degree of freedom. The [M]
matrix is a symmetric matrix, while the [N] matrix is a negatively mirrored matrix with
a zero diagonal. Note that the coe�cients [Equations (5) and (6)] are all unique matrix
components in the [N ] matrix that all appear in the [M ] matrix. Also note that the
last row of [G] (i = ň) is di↵erent since there are no masses from links further down the
kinematic chain sequence. Masses (m) and mass distributions (l) are shown in Figure 1a.

Equation (3) can model any degree of rotating system or rotating system links.
Degrees of freedom (links), mass, and mass distribution within each link can be easily
modified to create models for such systems as shown in Figure 1b. These modified
models can represent rotors, pendulums, cams, or rotating kinematic systems and open
kinematic chains.

3.2 Passive Kinematic Synchronization using Kinematically Matched
Coe�cients

Now that we have defined the general point-mass model for a rotational open-ended
swinging system, we are able to utilize to create synchronized motion between two
dissimilar systems.

Given the same torque input and initial conditions, two or more systems with the
same degrees of freedom will exactly match in dynamics if all four coe�cient matrices,
[M ], [N ], [G], and [T ] in Equation (3) are matched between the systems. Since only the
computed end values of these coe�cients determine the dynamic behavior of the rotating
systems, the masses and mass distribution do not have to match between them. This
allows for two or more systems with dissimilar mass and mass distribution parameters
to kinematically behave identically, that is, have identical dynamic coe�cients [M ], [N ],
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[G], and [T ]. For instance, assuming identical torque input and initial conditions, a
swinging single link pendulum with two masses can be designed to swing identically
to another single link pendulum with two or more masses, where the masses are are
distributed di↵erently along the pendulum link. This concept allows for the first and
second moments of inertia to be decoupled and greater design flexibility is obtained.
Given that each link has two or more masses distributed along the link (m̌ � 2), there
are infinite combinations of kinetmatically matched systems, that is, there are an infinite
number of ways the masses can be distributed such that the four coe�cient matrices in
Equation (3) match another system.

When the coe�cient matrices are generalized for systems with ň degrees of freedom
with m̌ masses per link (Equations 4, 7, and 8), a pattern of repeating matrix entries
emerges. It is seen that for the coe�cient matrices to match between two rotating systems
and cause synchronized dynamics, only unique parts of the coe�cient matrices need to be
matched between systems. We will call each unique term that appears in the coe�cient
matrices a kinematically matched coe�cient (KMC). The KMCs are represented in

Equations (5), (6), and (8) and are written in bold and highlighted font. The total
number of KMCs that have to be matched between kinematically synchronized systems
is given in Table 1. For example, to synchronize the dynamics of a pair of one degree of
freedom rotating system, two KMCs need to be matched, while for a pair of three degree
of freedom systems to be synchronized, nine KMCs need to be matched.

In the following section, we will review step-by-step instructions on how to apply the
passive kinematic synchronization technique for dissimilar and rotating systems, while
in Sections 4 and 5 we present two examples of this matching technique for one and two
degree-of-freedom systems with experimental validation.

4 Example 1: Passive Single Link Pendulum

In this section, we utilize the method in Section 3 and experimentally demonstrate its
validity. We start with creating two matched variations of a traditional passive ([T ] = 0)
single mass (m̌=1) single link (ň=1) pendulum that is shown in Figures 2a. Our created
variations of the single link pendulum have two masses per link (m̌=2) (Figure 2b).

Although more masses could be utilized to match the motion of this single link
pendulum, two masses are su�cient to describe any number of masses and mass
distributions. The parameters of all three dissimilar single link pendulums are shown
in Table 2. Since a single link pendulum is one degree of freedom, only two KMCs had

Table 1: Number of Kinematically Matched Coe�cients For Synchronized Uncoupled Motion

between Two or More Systems

DOF (ň) Number of KMCs

1 2
2 5
3 9
. .. .. .
ň KMCň�1 + (ň+ 1)
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Figure 2: Single link and double (2-link) pendulum representation model. (a), (b), and (d)

were used experimentally.

to be matched between systems (M1,1=33,600 g-cm2 and G1=1,260 g-cm).

4.1 Experiment Description

The three dissimilar single link pendulum systems were constructed from rigid foam
board that was light (1.125g per link) relative to the entire pendulum. Mass and mass
distributions were calculated using KMCs in Equation 4, 7, and 8. Lead weights were
used as pendulum masses and attached to the link at appropriate positions. The mass
values listed in Table 2 were rounded to whole grams for the experimental pendulums. To
ensure precise link dimensions, each pendulum was cut with a 60W laser cutter (Universal
Systems VLS4.60).

The links were attached to a short and rigid 0.375in (0.9525cm) aluminum rod using
a precision steel ball bearing to reduce friction. To minimize variability due to friction
(negative torque), the exact same bearing was used for each system. Each pendulum

Table 2: Single Pendulum (ň=1) System Synchronization Coe�cient Equations and System

Experimental Parameters

Coe�cient Coe�cient System 1 System 2 System 3

Index Value (m̌=1) (m̌=2) (m̌=2)

KMCs M1,1 33,600 g-cm2
m11l

2
11 m11l

2
11 +m12l

2
12

G1 1,260 g-cm m11l11 m11l11 +m12l12

Masses (g) m11=47.3 m11=35.0 m11=49.0
m12=21.0 m12=31.8

Lengths (cm) l11=26.7 l11=15.0 l11=5.0
l12=35.0 l12=31.9
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1

2
34

5

Figure 3: Release mechanism used for all pendulum measurements. (1) Ball Bearing (2) Rigid

Foam Link (3) Lead Weights (4) Extension Spring (5) Release Pin

system was dropped from the same initial position with an adjustable spring loaded
release mechanism. This complete setup can be seen in Figure 3.

The pendulums were video recorded at 50 frames/second (50 Hertz) using a Cannon R�

T3i digital camera with a Cannon R� EF 50mm f/1.8 II lens. Link angular position was
interpreted with Matlab R�, which was used to load video frames and identify each link’s
distinct color while in motion.

4.2 Results

Five videos of each pendulum were recorded (15 total). The recorded angular position
was averaged and filtered using a low pass 2nd order Butterworth filter at 6 Hz. This
angular position data is presented in Figure 4 and compared with ideal predicted model
behavior. Modeled systems have the same masses and mass distribution as measured
physical systems. As predicted, all three ideal modeled systems have the same temporal
kinematics and exactly overlap in Figure 4. Spectral analysis shows the same frequency
peak between all measured physical systems, while all three modeled systems peaked
0.06Hz below the measured system peaks.

While the recorded physical systems were a↵ected by non-conservative forces, such as
air resistance and friction, all three dissimilar pendulums matched kinematically. Their
slight di↵erence in amplitude can be explained by the variable mass and mass distribution
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pendulums (ň=1) with dissimilar masses and mass distributions are. The motion of the

dissimilar modeled systems (dashed line) is matched exactly and overlaps while the measured

motion of the three physical system is matched as well. The discrepancy of the modeled and

physical system is due to non-conservative forces.

in the pendulums that leads to variable weight and centripetal forces on the bearing,
which in turn increases rotational friction. Similarly, the e↵ect of the friction torque
is a↵ected by the inertia of the system. Although the kinematics are matched, the
kinetics in these dissimilar systems does not match; the di↵erent masses will generate
di↵erent forces. Despite these small e↵ects, all three physically dissimilar pendulums had
a frequency of 0.88± 0.04Hz.

When comparing the collected and model data, the e↵ects of damping become
distinct. As a result, the amplitude and period decrease over time for the actual systems
as shown in Figure 4. As previously explained, the model derivation did not include a
damping coe�cient, thus its e↵ects on motion was not predicted. Despite this di↵erence,
the model and all three physically dissimilar pendulums have very similar motion.

5 Example 2: Passive Double (Two-Link) Pendulum

We further investigate our kinematic matching technique by passively synchronizing two
passive ([T ] = 0) dissimilar two degree-of-freedom (ň=2) systems with two masses per
link (m̌=2). This double pendulum model is depicted in Figure 2c and 2d and KMCs
are shown in Table 3. Either step-by-step kinematic synchronization matching technique
could have been used to generate identical motion of these system. That is, the second
system may have been newly created or already available and subsequently matched by
adding an additional mass.

Traditionally the double pendulum is modeled in Figure 2c, however this model is
impractical from a design perspective considering that the pivot point between the upper
and lower link is exactly where the mass is placed and the link is massless. Hence, for
our comparison, we add design flexibility and utilize two masses per link.
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Table 3: Double Pendulum (ň=2) Synchronization Coe�cient Equations and Experimental

System Parameters

Coe�cient Coe�cient System 1 System 2
Index Value (m̌=2) (m̌=2)

KMCs M1,1 28,175 g-cm2
l

2
11m11 + l

2
12m12 + l

2
1(m21 +m22)

M1,2 23,800 g-cm2
l1(l21m21 + l22m22)

M2,2 32,900 g-cm2
l

2
21m21 + l

2
22m22

G1 1,715 g-cm l11m11 + l12m12 + l1(m21 +m22)
G2 1,190 g-cm l21m21 + l22m22

Masses (g) m11= 5.0 m11=52.6
m12=35.0 m12=29.1
m21=14.0 m21=23.0
m22=35.0 m22=28.0

Lengths (cm) l1=20.0 l1=20.0
l11=7.0 l11=5.0
l12=14.0 l12=15.0
l21=10.0 l21=12.4
l22=30.0 l22=32.4

5.1 Experiment Description

Two double pendulums were created using the same fabrication technique and material
as the single pendulum experiment in Section 4. An additional small ball bearing was
placed at the pivot point between the upper and lower link with a 0.25in (6.25mm)
wooden pin. Both small bearing and pin had a combined weight less than 2 grams.

The links were attached to the same aluminum rod, ball bearing, and were released
with the same release mechanism shown in Figure 3. Specific colors were placed on
each link to track their angular positions. Due to greater acceleration of links, the
double pendulum nonlinear motion was again recorded at 50 frames/second with the
same camera.

5.2 Results

As before, each pendulum’s angular kinematics were recorded five times (10 total),
averaged, and filtered with a 2nd order Butterworth filter at 6 Hz. The results of
these angular positions are illustrated in Figure 5 and compared with the ideal predicted
systems.

The motion for both link 1 (upper link) and link 2 (lower link) was in agreement
with model conditions through around 4 seconds, but were in good agreement between
experimental measurements throughout the whole trial, which was 12 seconds. This
movement of the two dissimilar systems can be seen in Figure 6 and in the accompanying
video. All collected data deviates less for link 1 than link 2, which can be explained by
the more chaotic movement of the lower link and also because of more variability due to
friction in the additional middle pivot. In summary, we have demonstrated two dissimilar
chaotic systems that have the same motion by kinematically matching the two systems.
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analysis.

6 Practical Application

The preceding sections presented the derivation and validation of the kinematic
synchronization technique. In this section we present a step-by-step tutorial for passive
synchronization of two dissimilar and rotating systems and some possible applications of
this method.

6.1 Creating a Rotating System that is Synchronized to an Existing System

When one complete rotating system is available and another rotating system is to
be created to precisely match the rotational kinematics of the available systems, the
following steps can be applied to accomplish this.

Step 1: Determine the degrees of freedom for the original and available system (A)
(ňA). For example, a swinging arm as a whole may be represented as a single
degree of freedom rotating system, while a swinging leg may be represented as a
double degree of freedom system as it bends at the knee. This is the number of
degrees of freedom the newly created and synchronized rotation system will have
(ňA = ň

B).

Step 2: Measure and represent the mass distribution of this system as lumped point
masses along each link. Make sure that each link in a systems has the same number
of masses (m̌) as any other link in that system, even though some may be set to
zero. For example, for a three degree of freedom system, link one, two, and three
each have five point mass representations along each link. However, link one and
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System 1

System 2

Figure 6: Temporal and spectral motion of two kinematically synchronized double link

pendulums (ň=2) with dissimilar masses and mass distributions. The motion both dissimilar

modeled systems is exactly the same, while both dissimilar physically measured systems is also

synchronized. The discrepancy of the modeled and physical system is due to non-conservative

forces.

two could be represented as five masses along each link, but link three may be
represented as four non-zero masses and one mass set to zero.

Step 3: Calculate the total numerical values of KMCs of the available system (A) using
Equations 4, 7, and 8. For example:
M

A
1,1 = 30,000 g-cm2

G

A
1 = 1000 g-cm

(see Table 2 and Table 3 for other KMC examples)

Step 4: Model a newly created rotational system (B) with the same degrees of freedom
(ňA = ň

B) and represent the mass distribution of each link with the same number
of masses per link. The number of masses per link must be equal or greater than
two masses (m̌B �2). As before in Step 2, some masses on links may be set to zero.

Step 5: Set the numerical KMCs of the available system (A) equal to the symbolic
KMCs of the newly created system (B). For example:
M1,1 = 30,000 g-cm2 = m

B
11l

2B
11 +m

B
12l

2B
12

G1 = 1,000 g-cm = m

B
11l

B
11 +m

B
12l

B
12

etc.

Step 6: Input approximate values for the masses, mass locations, and link lengths of the
newly created system (B). Leave as many unknown parameter variables as variables
as there are KMCs. That is, the number of variables to be found should equal the
number of KMCs. For example:
M1,1 = 30,000 g-cm2 = (35g)l2B11 +m

2B
12 (31.9cm)

G1 = 1,000 g-cm = (35g)lB11 +m

B
12(31.9cm)

etc.

Step 7: Solve for the unknown system parameter for the newly created system (B).

6.2 Synchronizing Two Existing Rotating Systems

Two already available, dissimilar, and rotating systems with equal degrees of freedom
can be passively synchronized in their independent rotational motion by augmenting one
of the systems to match the other. The following succession of steps describes how to
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passively synchronize two such independent, dissimilar, and uncoupled systems.

Step 1: Verify that the first system (A), the reference system, and second system (B)
are of equal degrees of freedom (ňA = ň

B). For example, the kinematics of a one
degree of freedom rotational system such as a rotating blade may only be matched
to the motion of another one degree of freedom rotational system.

Step 2: Measure and represent the mass distribution of this system as lumped point
masses along each link. Make sure that each link in a systems has the same number
of masses (m̌) as any other link in that system, even though some may be set to
zero. For example, for a three degree of freedom system, link one, two, and three
each have five point mass representation along each link. However, link one and
two could be represented as five masses along each link, but link three may be
represented as four masses with one mass set to zero.

Step 3: Calculate the total numerical values of KMCs of the available system (A) using
Equations 4, 7, and 8. For example:
M

A
1,1 = 30,000 g-cm2

G

A
1 = 1,000 g-cm

etc.

Step 4: For the second system (B), add one additional mass for each link. This
additional mass per link and its location on the link are to be determined
subsequently.

Step 5: Using Equations 4, 7, and 8, find the KMC equations for the second system (B)
(MB

1,1, G
B
1 , etc.), and input the known (measured) lumped point masses and their

locations.

Step 6: Set the numerical KMC values for the first system (A) equal to the KMC
equations found for the second system (B) For example:
M1,1 = 30,000 g-cm2 = m

B
11l

2B
11 +m

B
12l

2B
12

G1 = 1,000 g-cm = m

B
11l

B
11 +m

B
12l

B
12

etc.

Step 7: Solve for the added and unknown point masses and their locations (from Step
4) for each link of the second system (B). There should be as many unknown
parameters (added masses, mass locations, and link lengths) as there are KMCs.

6.3 Kinematic System Simplification Technique

We have shown that given the same degrees of freedom and torque input, two dissimilar
rotating systems can be motion matched. A minimum of two masses per degree of
freedom are required to mimic the motion of a matching system. In essence, this
kinematic matching technique can be used to simplify a complicated rotating system.
For example, a rotating fan blade, gear, or cam of arbitrary shape can be modeled as
one link with two masses, while an open ended chain with any number of links can be
modeled as two masses per link. This can greatly simplify computation resulting in the
same kinematics.
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6.4 Gait Pattern Manipulation

In humans [7, 13, 14], animals [6], and some insects [21], the limbs can be modeled as
swinging pendulums that swing in accordance to their masses and mass distribution. It is
possible to manipulate limb movements by simply changing mass and mass distributions
such as adding mass to a specific location of the limb. For example, a gait asymmetry
(walking limp) can be created in an individual by attaching an extra weight to one
leg [14], while in contrast a symmetric gait can be restored from an asymmetric walking
pattern by adding weight to a specific location [8]. With the presented kinematic
matching technique, we can match two swinging limbs, such as human legs, so they
move symmetrically, but out 180� out of phase. While walking kinematics are the most
obvious application, other parts of the body can be synchronized such as swinging arms
during walking or moving fingers while playing an instrument or typing on a keyboard.
This technique can also be used for the kinematic behavior prediction of swinging robotic
limbs [6, 9].

6.5 Prosthetics

Wearing a prosthesis that does not have the exact size and weight of the missing limb
can create gait asymmetries [15]. Prosthetics research commonly tries to mimic the
lost limb in regards to size, weight, and length; however this design constraint can
often times seem unrealistic and overconstraining. Using a numerical passive dynamic
walker model, Sushko et. al [26] showed that this design constraint can be alleviated by
changing left and right limb mass and mass distribution parameters to obtain symmetric
gait with asymmetric limb parameters. As previously stated the presented kinematic
matching technique can analytically match two limbs with symmetric limb mass and
mass distribution parameters. That is, we can apply this technique to match the healthy
limb with the other limb with a prosthetic by adding masses to one or both limbs, yielding
a symmetric gait.

7 Conclusions and Future Work

We derived a general equation of motion for two-dimensional ň degree-of-freedom m̌

masses per degree of freedom open ended rotating systems. Further we developed a
passive kinematic matching technique that is applicable to such systems. In order
to match the same rotating kinematics, only two masses per degree of freedom are
necessary. The motion analysis of three matched one-degree-of-freedom unactuated single
link pendulums with dissimilar masses and mass distribution showed that these dissimilar
systems were kinematically identical, although unmodeled nonconservative forces created
slight deviations between ideal model predictions and actual measurements. While
chaotic in motion, the same results were shown in the motion analysis of two two-degree-
of-freedom unactuated double link pendulums with synchronous motion lasting for about
4 seconds before nonconservative forces caused deviation. Measured kinematics of the
two dissimilar experimental double pendulums matched for more than 12 seconds.

It is possible to alter the mass distribution of a rotating system by moving masses
along system links in order to kinematically match it to another system. It is also possible
to add or remove masses at key locations along a rotating link. These methods could
be utilized to synchronize the kinematics of two swinging legs while walking. However,
although dissimilar kinematically synchronized systems move identically, the kinetics
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can vary. This was be seen in our first example between three dissimilar single link
pendulums. While system kinematics matched, pendulum bearing reaction forces varied,
yielding dissimilar damping forces. Unless mass and mass distribution parameters are
exactly matched, the internal forces throughout the system will not match. Future
work includes the analysis and possible synchronization of inter-system kinetics. The
authors hypothesis that either the kinematics or kinetics can be matched, but not both
simultaneously in dissimilar systems.

It is also presumed that similar passive synchronization techniques can also be derived
in all three dimensions; further derivations are needed.
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