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A circular shape placed on an incline will roll; similarly, an
irregularly shaped object, such as the Archimedean spiral,
will roll on a flat surface when a force is applied to its
axle. This rolling is dependent on the specific shape and
the applied force (magnitude and location). In this paper,
we derive formulas that define the behavior of irregular 2D
and 3D shapes on a flat plane when a weight is applied to
the shape’s axle. These kinetic shape (KS) formulas also
define and predict shapes that exert given ground reaction
forces when a known weight is applied at the axle rotation
point. Three 2D KS design examples are physically verified
statically with good correlation to predicted values. Motion
simulations of unrestrained 2D KS yielded expected results
in shape dynamics and self-stabilization. We also put forth
practical application ideas and research for 2D and 3D KS
such as in robotics and gait rehabilitation.

Nomenclature
Two-dimensional Shape
q Angle around shape axle
R(q) Shape radius
y(q) Angle relating shape tangent to vector and applied

weight to radial force
Fv(q) Weight applied at axle perpendicular to ground
Fr(q) Radial ground reaction force parallel to ground
L(q) Horizontal distance between applied weight vector

to ground contact point
H(q) Vertical distance between shape axle and ground
Three-dimensional Shape
q, f Elevation and azimuth angle around shape axle
Rr(q,f) Shape radius in the radial plane
Rt(q,f) Shape radius in the tangential plane
Fv(q,f) Weight applied orthogonal to ground
Fr(q,f) Radial ground reaction force (RGRF) of shape

parallel to ground
Ft(q,f) Tangential ground reaction force (TGRF) of shape

parallel to ground

1 Introduction
It is easily demonstrated that a perfectly circular shape

does not roll on a flat surface, but only rolls when placed
onto a decline. By straightforward dynamic analysis of a
circular shape, it is obvious that when placed on a decline
the sum of moments does not equal zero, hence the shape
will roll. It can also be demonstrated that a smooth two-
dimensional polar shape with a non-constant radius will roll

on a flat surface around the instantaneous point of contact. It
will roll toward the decreasing radius with respect to angle
when a vertical force is applied to its axle. Both of these
situations create the same instantaneous dynamic rolling
effect, illustrated in Fig. 1.

The rolling of a circular wheel is definitely not novel,
but the rolling of an irregularly curved shape, such as a
spiral rolling on a flat surface, is useful and has not received
much research attention. In this paper, we show how to
derive two- and three-dimensional shapes that, when placed
on a flat plane and loaded with a known weight at the
axle point, will produce a desired ground reaction force
parallel to the flat plane. This derived shape with known
force parameters can in turn be used in static and dynamic
applications some of which include, but are not limited to,
self-stabilization, material hardness testing, robotic control,
and gait manipulation.

This paper defines and validates applications of two-
and three-dimensional shapes that have a predictable kinetic
and kinematic profile across their perimeter surface. Due to
their predictive kinetic parameter, we will call these shapes
kinetic shapes (KS).

2 Background
Two centuries B.C., astronomer and mathematician

Conon of Samos was the first to study conic sections,
which are curves created by the intersections of cones. His
work greatly inspired a colleague, Archimedes, to further
study a special two dimensional curve now known as the
Archimedean spiral (AS) [1]. The AS is given by Eqn. (1),

R(q) = a+bq, (1)

where a and b are arbitrary spiral constants. While there are
many variations of such a curve (e.g., Logarithmic Spiral,
Cortes Spiral, etc.), the AS is defined in polar coordinates
as a curve that increases at a steady rate in radius as the
angle increases. This shape is particularly interesting in its

Fig. 1. A circular wheel on a decline and a shape with a negatively

changing radius are instantaneously equivalent in rolling dynamics.



physical form, in that it rolls by itself on a flat surface and
closely mimics a circular wheel rolling down a hill. While
the physical form of the AS is applicable in many disciplines,
such as fluid compression [2] or microbiology [3], it is found
to be attractive to mechanical designs where passive rolling
or force redirection is desired.

Such a design is the Gait Enhancing Mobile Shoe
(GEMS) [4, 5] for gait rehabilitation of individuals with
neurological disorders such as stroke. The GEMS mimics
a split-belt treadmill (a treadmill with two independently
controlled treads) by pushing the individual’s foot backward
as they step onto the shoe with AS-shaped wheels. As the
user applies their weight onto the spiral wheels, the wheels
react by rolling horizontally. This method is completely
passive in that it does not utilize any energized motors or
actuators, but only uses the person’s weight to create motion.
Unlike a split-belt treadmill, the GEMS is portable and can
apply rehabilitative motions for a longer amount of time.
This two dimensional rolling motion is essentially created
by the changing of the radius in a rounded shape.

Similarly, a deformable crawling and jumping soft
robot [6] can use this rolling principle where the initial
circular shape is mechanically deformed, which causes it
to roll on a flat surface and it can even roll up a slope.
This circular robot progresses forward by shortening and
lengthening internal chords that are attached to an outside
rim. As the rim is systematically deformed by the chords,
the robot rolls forward or backward. This crawling robot
used the same principle to construct a sphere that can roll [6].
This study of a crawling and jumping deformable soft robot
only addresses the hardware, software, and motion energy
analysis, but is missing an explanation of the rolling kinetics
and an analytical description of the motion.

A static version of a spiral shape is used in rock
climbing equipment. The safety equipment known as a
spring-loaded camming device (SLCD) [7] is commonly
used by rock climbers to secure their rope into a rock crack
while climbing. The SLCD utilizes two freely spinning
spiral-shaped cams facing opposite directions. When the
climber falls and applies a sudden force between the spiral
cams and the rock surface, the cams are pushed outwards
increasing friction between the cams and rock surface and
providing enough force to resist the falling climber. This
static force redirection is similar, but opposite, to the
previously described GEMS and rolling robot in that it
directs horizontally applied force into a perpendicular force.
While this climbing innovation has been on the market
for decades, the authors are not aware of any significant
analysis/research that has been published regarding the
variation of forces along the cam perimeter and optimization
of its logarithmic spiral shape.

Spiral-shaped wheels have a resemblance to objects with
an eccentric rotation point, such as cams [8, 9]. Research on
cam design focuses on the transfer of kinematics of two or
more entities, generally rotary motion (the cam) into linear
motion (the follower). While research on camming generally
focuses on kinematics and tribology, it does not have free or
forced rolling dynamics or force redirection of continuous

irregular shapes.
The study of belt drives [10] and gearing [11] generally

focuses on torque, rotational velocities, and normal forces
between gear tooth surfaces. This includes the kinematics
of circular and non-circular (elliptical) belt pulleys [12] and
gears [13], and the kinematics of rack and pinion type of
mechanisms [14]. Again, little is found in this area for free
rolling and force redirection of irregular shapes. One related
study derived a square wheel with matching roads (a type of
rack and pinion) [15] that showed some insight into irregular
shape rolling kinematics, but kinetics and static equilibrium
of these shapes are not addressed.

One study considered the geometry of 2D circular, non-
circular, and logarithmic shape rolling [16]. However, it did
not consider any kinetics and strictly focused on the traces of
curves (roulettes) created when rolling over various surfaces.

Spiral patterns are also possible in 3D, such as a rhumb
line (loxodrome). We include helix type spirals in our
definition of 3D spirals, which have no change in radius,
only in the depth dimension. No literature could be found
that defines the kinetic or kinematic behavior of such shapes
(or curves) during free or forced rolling dynamics. However,
such research is needed for gait correction and rehabilitation.

Roll over shapes (ROS) are foot rocker shapes that the
foot rolls over when completing the stance phase during the
gait cycle. ROS have enormous effects in gait kinematics,
kinetics, and balance [17], and ROS are important in
prosthetic design [18, 19, 20]. However, current gait studies
have not been able to analytically predict the behavior of
ROS. Hanson et al. [20] state ”A better understanding
[of ROS] could be used to develop improved prostheses,
perhaps improving balance and balance confidence, and
reducing the occurrence of falling in lower limb prosthesis
users”. A significant issue in lower limb prosthetic designs
are the forces exerted by the prosthetic onto the user’s stump.
These forces can be manipulated or even diminished if the
ROS is modified properly [21]. Besides prosthetic design,
orthotic therapy and gait rehabilitation using specially-
designed shoe soles can benefit patients of diseases such
as cerebral palsy, parkinson’s, and stroke [22], and increase
muscle activity of selected foot muscles [23].

ROS also play a crucial role in the design of passive
dynamic walkers (PDW), which can be used to predict
normal and pathological human gait [24]. A PDW (2D or
3D) mimics human gait by walking down an incline solely
due to gravity, hence they are completely passive. Through
design trials, McGeer indicates a most effective foot rocker
radius to be 1/3 of total leg length [25], exactly matching
the most efficient human ROS radius [26]. Although PDW
ROS are a key component to the dynamics and stability of
PDWs, currently the authors are not aware of any literature
that specifically specifies the size or shape of PDW ROS.

3 Two-Dimensional Kinetic Shape
In this section we derive, validate, and present design

examples of two-dimensional kinetic shapes.



3.1 Mathematical Model Derivation
A curved and continuous arbitrarily 2D shape that is

pressed onto a flat plane at its axle point tends to rotate
towards the decreasing radius. This rotation is because the
applied weight is not vertically in line with the point of
ground contact, which creates unmatched moment couples
with the radial ground reaction force (RGRF). Hence, the
shape is not in static equilibrium and will roll.

However, if the rolling motion of this shape is restrained
by a horizontal force at the axle point so that the shape is
in static equilibrium, the sum of all forces and moments
must equal zero (Fig. 2(a)). For this to happen, the moment
couple created by the RGRF (friction) and the equal and
opposite restraining force has to be equal to the moment
couple created by the applied weight and the equal and
opposite vertical ground reaction force. Because the shape
varies in radius, the RGRF component pushing away from
the axis, Fr(q), must vary as well.

It is assumed that the friction force between the ground
and the shape is large enough for the shape not to slip. It
is also assumed that there is no deformation of the shape or
ground. This analysis is also only valid when the applied
force at the shape axle is much greater than the combined
gravitational forces applied at the center of mass of the shape
or if the center of mass coincides with the shape axle.

We will derive a general formulation to create a shape
that will generate a desired RGRF given a known applied
weight. We begin by adding the two moment couples acting
on a general 2D shape under static equilibrium

ÂMz = Fv (q)L(q)�Fr (q)H (q) = 0 (2)

where L(q) and H(q) are shown in Fig. 2(a), and defined as

H(q) = R(q)sin(y(q)), (3)

L(q) = R(q)cos(y(q)), (4)

and y(q) is defined in Fig. 2(a). Substitution of Eqn. (3)
and (4) into the statics equilibrium Eqn. (2) yields

Fv(q)[R(q)cos(j(q))] = Fr(q)[R(q)sin(j(q))]. (5)

Dividing out R(q) and applying appropriate trigonometric
identities results in

y(q) = tan�1
✓

Fv(q)
Fr(q)

◆
. (6)

Eqn. (6) defines the angle y(q) along the perimeter of the
shape. y(q) relates the weight applied at the shape axle and
the RGRF at ground contact.

y(q) can also be defined as the angle at the point of
ground contact between the ground vector (shape tangent),
dR/dq, and the radial vector (axle to ground contact point),
R(q), as shown in Fig. 2(b) [27]. This relation is defined as

y(q) = tan�1
✓

R(q)
dR/dq

◆
. (7)

It is now apparent that we can equate and reorder Eqns. (6)
and (7) to form a first order ordinary differential equation.

Fig. 2. (a) Static equilibrium of a kinetic shape. (b) Kinetic shape

geometric parameters.

dR
dq

=
R(q)Fr(q)

Fv(q)
(8)

Eqn. (8) can be solved using the method of separation of
variables by first rearranging,

✓
1

R(q)

◆
dR =

✓
Fr(q)
Fv(q)

◆
dq , (9)

then integrating both sides of the equation to solve for the
shape radius.

R(q) = exp
Z Fr(q)

Fv(q)
dq+Constant

�
(10)

The integration constant is dependent on the initial radius of
the shape. Eqn. (10) will derive a 2D kinetic shape (KS) that
produces a RGRF, Fr(q), when a load perpendicular to the
ground at axle point, Fv(q), is applied. Section 3.3 shows
how Eqn. (10) is used to design a shape and experimentally
validates several force profiles.

The derived shape can be checked to determine if it
produces the desired reaction forces when loaded by taking
the obtained shape R(q) and finding y(q) in Eqn. (7), then
inputting it back into Eqn. (6). The resulting forces should
match the initial input forces. This also enables one to find
the kinetic profile of any irregular curved 2D shape.

The 2D KS equation, Eqn. (10), yields a unitless radius
value. This indicates that it only depends on the force ratio
rather than the size of the shape. Thus, when loaded with a
fixed weight, the same KS with different scaling factors will
produce the same RGRF. For example, a KS for a constant
800 N weight and constant 200 N RGRF input will be the
exact same as a KS for a constant 4 mN vertical and constant
1 mN RGRF input regardless of its scaled dimensions.

3.2 Physical Verification Experiment
The kinetic shape can be verified with the simple setup

shown in Fig. 3. The weight is applied to the shape axle
and the reaction forces exerted by the shape axle are both
measured with a load cell sensor (Omega LC703) placed in
line with the forces. To prevent the KS from slipping, two-
sided course grade sandpaper was placed at ground contact.
As the applied weight was gradually loaded, the RGRF
increased as well.

The tested KS were loaded at p/6 rads intervals from
zero to 2p rads. Some perimeter points, such as the lowest
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Fig. 3. Schematic of test structure for 2D kinetic shapes

radii on a spiral shape, were omitted because the ground
contact could not reach that particular perimeter point (i.e.,
Fig. 4(a) at 0 rads), however this usually was only one point.

The reaction load for each perimeter point was recorded
with a mass of 7.9 kg to 18.0 kg at four even intervals applied
to the shape axle. The mean and standard deviation for each
point was calculated in terms of percent force transfer (100⇤
Fr(q)/Fr(q)), which was then multiplied by 800N.

Three 2D KS examples were chosen for verification and
were laser cut from tough 0.25 in (0.64 cm) thick Acetal
Resin (Delrin R�) plastic. The laser cutter used to cut test
shapes was a 60 Watt Universal Laser System R� VLS4.60.

3.3 Model Result Design Examples
To demonstrate example KS designs using Eqn. (10),

three different desired force functions with constant applied
weight were chosen: constant, sinusoidal with an offset,
and Fourier series expanded non-smooth RGRF function.
Each derived KS assumed a constant vertical force of 800 N.
The magnitude of these force functions were chosen for the
convenience of experimentation. Although the analysis can
be expanded to KS that revolve more than once, we focus
on shapes that range from zero to 2p rads. It is important
to note that if the 2D shape is to be continuous around one
revolution, Eqn. (11) must be satisfied.

Z 2p

0
Fr (q)dq = 0 (11)

3.3.1 2D Shape 1: Constant RGRF
To introduce the KS design concept, we start with a

shape defined by a constant force function and a constant
applied weight function. Eqns. (12) and (13) describe the
input functions used to derive the first 2D KS. The KS was
started with an initial shape radius of 2.5 in (6.35 cm) and
ends with a 5.46 in (13.86 cm) radius.

Fv(q) = 800N (12)

Fr(q) = 100N (13)

With these forces and initial radius, Eqn. (10) becomes

R(q) = exp


100
800

q+ ln(2.5)
�q=2p

q=0
. (14)

As an 800 N force is applied at the shape axle, the
shape will react with a 100 N force regardless of the
rotation angle. As seen in Fig. 4(a), the gradual and

slight exponential increase in shape radius, dR/dq, statically
produces a constant force at any perimeter point around the
shape, creating a spiral KS. Note that the units, and thus the
scaled size, are irrelevant and this KS would behave the same
if scaled up or down.

As seen in Fig. 4(a), the physical measurements are in
good agreement with theoretical values. There are some
variations; however, these can be accounted for by shape
surface and test setup imperfections. Although the force
profile standard deviation is not always within predicted
theoretical range, the trend is relatively constant.

3.3.2 2D Shape 2: Sinusoidal RGRF
A KS can also be derived using a more complicated

sinusoidal force function with a constant offset. Eqns. (15)
and (16) describe the input functions that define this 2D KS.

Fv (q) = 800N (15)

Fr (q) = 100 sin(q)+100N (16)

With these forces, Eqn. (10) then becomes

R(q) = exp


1
8
(q� cos(q))+ ln(1.75)

�q=2p

q=0
. (17)

Unlike in the previous example that produces a constant
RGRF, this shape creates a varying sinusoidal force
throughout the rotation. In this example design it is clear
that the reaction force is dependent on dR/dq of the shape.
As the sinusoidal force reaches a maximum at p/2, dR/dq
is steepest and produces the highest RGRF. Likewise, as the
input force reaches a minimum of zero at 3p/2, dR/dq is
zero as well. At 3p/2 the KS instantaneously behaves as a
circular wheel would, and, like a circular wheel, it does not
produce a RGRF when vertically loaded at its axle.

The KS assumes a spiral shape with a starting radius of
1.75 in (4.44 cm) and a final radius of 3.82 in (9.70 cm). The
shape again resembles a spiral due to the fact that the sum of
force around the shape perimeter is non-zero as defined by
Eqn. (11). The physically measured force profile for this 2D
KS, shown in Fig. 4(b), was slightly higher than predicted,
however the sinusoidal trend was in good agreement.

3.3.3 2D Shape 3: Fourier Expanded Piecewise Force
It is clear now that a KS can be designed with any input

force function. We expand our analysis to a piecewise force
function that has been expanded using ten Fourier series
terms to demonstrate that nearly any force profile can be
created. This piecewise force function is defined as

Fv (q) = 800N (18)

Fr (q) =

8
<

:

200N, 0  q  3.8
4380�1100qN, 3.8 < q < 4.3

�350N, 4.3  q < 2p
(19)

Note that this time the RGRF function crosses zero at
4.1 rads (Fig. 4(c)). At exactly this point, the shape produces
no force and the radius starts to decrease in order to produce
a negative force. This shape does not form a spiral, but is



Fig. 4. (a) 2D Shape 1 forms a spiral with a steadily increasing radius as it is defined by a constant vertical force input and a constant RGRF

output all around the shape. (b) 2D Shape 2 forms a monotonically increasing radius spiral, however when a constant weight is applied, it

reacts with a sinusoidal RGRF around its perimeter. (c) 2D Shape 3 forms a continuous shape because, when a constant weight input is

applied, it initially reacts with a positive reaction force and then switches directions to form a negative RGRF. All physical measurements are

in good agreement.

continuous around its perimeter, starting and ending at the
same radius, hence Eqn. (11) is satisfied.

Measurements on the physical shape verified the
predicted values. As seen in Fig. 4(b), physical data falls well
within theoretical values. Note that the standard deviation of
measurements increases where the force profile fluctuates the
most.

3.4 Shape Dynamics
A restrained 2D KS is able to statically produce desired

reaction forces; however we can utilize an unrestrained
kinetic shape to exert a known force around its perimeter
over time in a dynamic setting. In other words, a KS can be
obtained to exert a predicted dynamic force onto an object or
itself creating a predicted dynamic response.

One application of a kinetic shape in a dynamic setting
is to displace a flat plate on the ground. We assume a no-
slip condition between the KS and the flat plate, and no
friction between the flat plate and ground. Also, the shape
axle is constrained to only move along the vertical direction
as shown in Fig. 5.

As a vertical force is applied to the KS, RGRF push
the flat plate in the horizontal direction, thus changing
its velocity. To illustrate this concept, we simulated the

Fig. 5. A flat plate with a known mass is dispensed with a predicted

linear acceleration.

sinusoidal KS that weighs 0.01 kg (0.1 N) (Fig. 4(b)) being
pushed vertically at its axle with 8.0 N force onto a flat plate
weighing 0.5 kg (4.9 N). The shape mass with respect to
the dispensed plate is considered negligible. All dynamic
behavior was analyzed with SolidWorks Motion Analysis R�.

Fig. 6 shows the plate velocity and shape rotation
position versus time. The magnitude of the applied vertical
force only affects the simulation time. Because the shape was
not continuous all around, setup dynamics were recorded
from 2p to 1.7 rads, rolling from the greatest radius at 2p
to the lowest radius.

Referring back to Fig. 4(b), this velocity profile
perfectly shows the effect of changing the sinusoidal output



Fig. 6. Dynamic interaction of 2D Shape 2 onto a flat plate (0.5 kg).

The applied weight is constant as the kinetic shape pushes the plate.

force around the shape. Adhering to the basic principle
dynamic of Newton’s second law, as the RGRF decreases to
zero, so does the acceleration of the moving plate, creating
a plateau in plate velocity at 3p/2. Thereafter, the pushing
force increases dramatically and so does the plate velocity.

Although this simulation setup and results are insightful
of pushed plate dynamics, it can be relatively viewed as
regular over-ground rolling of the KS, where the shape
moves over a stationary surface. However, in over-
ground shape rolling, the changing moment of inertia about
ground contact factors into the rolling dynamics, which can
obfuscate this example. If the weight applied at shape axle is
much larger then the weight of the shape itself, shape inertial
forces can be neglected. We leave this to future work.

3.5 Mechanical Self-Stabilization
Dynamic self-stabilization is an interesting mechanical

aspect of an unrestrained KS. A system that is able to self-
stabilize will correct its state to a stable value when perturbed
by an external force or when started at any other state. When
an unrestrained and rolling KS RGRF profile switches signs,
crossing the zero axis, it creates a stable point. Once loaded,
the shape will roll around its perimeter, eventually settling
onto this zero stable point due to non-conservative damping
forces such as friction.

This behavior can be observed in Fig. 7, where the
KS RGRF is described by a simple sinusoid switching
force sign at 0 and p rads. In a virtual simulation with
SolidWorks Motion Analysis R�, this shape is pushed down
with a constant weight (50 N) that is significantly larger then

Fig. 7. When disturbed or placed at an unstable position, a two-

dimensional kinetic shape settles at its equilibrium point.

Ft

FVFV

Fr Fr

Fig. 8. While a cylinder only produces a RGRF force to keep it from

slipping, a helix curve produces an additional TGRF for sideways

rolling, as illustrated in this figure.

the shape weight (0.1 kg; 1 N) starting at 3p/2 rads after
which it oscillates and comes to a halt at p rads. While
the behavior is consistent, the settling time, of course, is
dependent on the applied weight, shape mass (and/or plate
mass), and non-conservative forces. It is stressed that shape
inertia becomes negligible if the applied weight is much
larger then the shape weight. This concept can be utilized
in any mechanical structure where the stable position of the
structure is important after disruptive forces are applied.

4 Three-Dimensional Kinetic Shape
We expand our analysis into the third dimension by

deriving and analyzing a 3D KS. The behavior of a 3D KS
can sometimes become hard to visualize. While a 2D KS
produces only one RGRF that pushes radially away from the
shape’s axle, a 3D KS can theoretically produce two force
components: the same RGRF pushing away from the axle
point and a tangential ground reaction force (TGRF) pushing
around the vector of weight application that is orthogonal to
the ground plane.

To visualize the TGRF, imagine a cylinder sitting on a
flat plane (e.g., a cup on a table) as shown in Fig. 8. If the
cylinder is tipped over, the ground experiences only a RGRF
to keep it from slipping. However, if the cylinder’s sides are
not uniform in length around its perimeter, such as in a helix
curve, the tipped helix will tend to push and roll around the
vertical axis which runs through the center of mass and is
perpendicular to ground. This rolling motion is caused by
the TGRF acting on the cylinder’s rim. This TGRF can also
be generated if a 2D KS is wrapped around a vertical axis
with a non-constant radius.

4.1 Mathematical Model Derivation
We seek to derive a set of equations that allows us to

construct a shape that produces a known RGRF and TGRF
when vertically loaded. Similar methods and assumptions
utilized to derive a 2D KS are used to produce an analytical
model of a 3D KS.

We begin by examining a 3D shape/curve in static
equilibrium, shown in Fig. 9. The summation of all moment
couples in the radial plane and about the vertical vector
yields the following equations:

ÂMr = Fv(q,f)R(q,f)cos(y) ... (20)
�Fr(q,f)R(q,f)sin(y) = 0

ÂMv = [Ft(q,f)cos(f)] (R(q,f)cos(y)cos(f)) ... (21)
�[Fr(q,f)cos(f)] (R(q,f)cos(y)sin(f)) = 0 .



These kinetic equilibrium equations are simplified, rear-
ranged and related to the geometric parameters shown in
Fig. 10, following a similar derivation as shown in Sec. 3.1.

tan(y) = Fr(q,f)
Fv(q,f)

=
R(q,f)
dR/dq

(22)

tan(f) = Ft(q,f)
Fr(q,f)

=
dR/df
R(q,f)

(23)

Angle y again relates forces in the radial plane while
also relating the radial vector to the ground plane. Angle
f relates the TGRF to the RGRF while also relating the
geometric parameters shown in Fig. 10.

After rearranging terms, we are left with two first order
ordinary differential equations.

✓
1

R(q,f)

◆
dR =

✓
Fr(q,f)
Fvq,f)

◆
dq (24)

✓
1

R(q,f)

◆
dR =

✓
Ft(q,f)
Frq,f)

◆
df (25)

By the method of separation of variables, R(q,f) yields

Rr(q,f) = exp
Z Fr(q,f)

Fv(q,f)
dq+Constant

�
(26)

Rt(q,f) = exp
Z Ft(q,f)

Fr(q,f)
df+Constant

�
(27)

Eqns. (26) and (27) jointly describe a 3D KS that relates
an applied weight, RGRF, and TGRF. These radius equations
describe the shape in the radial and tangential direction,
respectively. As before, a radial force is produced by
the change in radius with elevation angle, while TGRF is
produced by a change in azimuth angle.

In the absence of a TGRF, Eqn. (26) is Eqn. (10), and
in the absence of a TGRF forms the same 2D shape. This
is made clear when examining Eqn. (27), where as the force
ratio diminishes, the radius does not change in the tangential
direction. Also, as the force ratio increases, the shape
increases exponentially in the tangential direction radius.

Fig. 9. Free body force diagram of a 3D kinetic shape

Fig. 10. Geometric parameters at 3D shape ground contact

4.2 Model Result Example
To illustrate the 3D KS represented by Eqns. (26)

and (27), we derive a shape, which when loaded with a
known weight will produce a specified radial and TGRF. The
following force functions define this KS.

Fv(q,f) = 800N (28)
Fr(q,f) = 60qN (29)

Ft(q,f) = 100sin(f)+200N (30)

The KS force function along with the integration path (i.e.,
shape rotation path) in the radial and tangential direction are
shown in Fig. 11(a), while the derived shape along with the
surface and curve rendering is displayed in Fig. 11(b).

Single and subsequent integration paths can form a KS
curve and surface, respectively, however a KS surface often
cannot statically or dynamically behave as predicted when
weight is applied at the axle point due to the interaction
between integration paths. Invalid surfaces arise when
integration paths that form the surface are not continuously
accessible to the ground plane. In many cases, kinetically
defined surfaces can be found in which all integration paths
are possible, enabling the surface to exert force onto a ground
plane.

While we do not present the physical verification of this
3D KS, static analysis of this shape could be done using
a force plate, similar to what was done in the 2D case.
Dynamic analysis could be done by placing the 3D shape on
a simultaneously rotating and radially extending disc surface.

5 Design Applications and Ideas
2D and 3D static and dynamic KS can be utilized in

many mechanical methods and designs. In this section a few
applications are analyzed and discussed.

5.1 Load Testing Equipment
The static application of a 2D KS can be desirable

in surface hardness/properties testing. Consider a surface
microindentation hardness testing device/method such as
Rockwell, Brinell, or Vickers hardness test. A 2D KS can
be derived such that the examiner utilizes only one applied
weight while only having to rotate the kinetic shape in
order to get a variable load applied onto the surface micro
indentation device.

5.2 Variable Dynamic Output for Mobile Robotics
It was shown that a 2D KS can be derived that creates a

predictable linear kinematics profile of a pushed plate. This
concept can be useful in the realm of mobile robotics, where
the velocity profile of robot linkages or any robot movement
is crucial. This method offers a mechanical alternative
to electronic robot dynamics manipulation and trajectory
control. While the 2D KS can produce a predictable kinetic
and kinematic linear movement, a 3D KS can be used to
produce expected rotary motion.



Fig. 11. (a) Radial and tangential ground reaction force definition of 3D KS. (b) Derived 3D surface and 3D curve KS, where the curve is

the surface center.

5.3 Gait Correction and Prosthetics Shoe Soles

5.3.1 Shoe Sole Design

Shoe sole design impacts ground reaction force
magnitude and direction during walking. These ground
reaction forces can affect lower limb joints and muscles
and/or the spine. A 3D KS can be derived that utilizes gait
forces to mechanically filter and redirect these forces in order
to change foot pressure distribution or foot orientation to
alleviate walking problems.

Foot prosthesis design can greatly benefit from a 2D or
3D KS in order to predict foot roll over shape (ROS) kinetics
during walking. Better ROS can result in more symmetric
gait and less frictional forces at the stump.

Fig. 12. A kinetic shape derived to react with a constant 100 N radial

force when non-constant walking weight is applied.

5.3.2 GEMS Optimization Example
The Gait Enhancing Mobile Shoe (GEMS) [4, 5] is

a novel device developed for lower limb rehabilitation,
specifically asymmetric gait. The GEMS mimics a split-
belt treadmill, which imposes different velocities on each
tread, that is used in gait rehabilitation. However, the GEMS
does not use any actuators or motors, but relies on passive
spiral shaped wheels where the user’s weight is transferred
into a backward motion. The GEMS regulates the generated
horizontal force from the spiral wheels using dampers and
springs to create a safe overground velocity.

Human gait is divided into two phases: stance and
swing. The stance phase consists of initial heel strike,
mid-stance, and toe-off. During all three sub-phases the
radial ground reaction forces vary from resistive forces at
heel strike to assistive forces at toe-off, switching at mid-
stance. Treadmills generate a constant backward velocity
and the GEMS was initially designed to create a similar
profile. However, the GEMS also affords the optimization
of the velocity profile that includes non-constant velocities
and force profiles. The KS wheel can be designed using the
known applied weight during the stance phase so that the
resulting horizontal force is any arbitrary profile desired.

Using actual kinetic gait data which was obtained by a
person walking over a force plate multiple times, we derived
a KS to produce a constant horizontal (radial) backward
force of 100 N. The applied weight and horizontal (radial)
reaction force trends were simulated as shown in Fig. 12.
The simulated force definition used to derive the KS was

Fv(q) = 120 sin(1.5q)+550N (31)
Fr(q) = (�71q+228)+100N (32)

To mimic actual data, the applied weight and desired
horizontal force functions were windowed with a tapered
Tukey window at a taper ratio of 0.4. The derived shape is
shown in Fig. 12 with an initial radius of 2.78 in (7.00 cm).
The resulting GEMS wheel shape will theoretically produce
a constant backward force of 100 N. Given the derived
wheel shape, the generated radial force is only dependent



on the applied weight. Therefore, it is irrelevant how many
wheels the GEMS has since the applied weight is distributed
through the number of wheels, hence producing a cumulative
backwards force of 100 N.

6 Conclusion
We derived 2D and 3D formulas to produce KS defined

by ground reaction forces when a known weight is applied.
Three 2D shapes were tested statically and results were in
good correlation with predicted values. During physical
verification of 2D KS, it was found that a larger KS and KS
with greater radial change produced more accurate readings.
This can be accounted to surface finish and a more defined
radius change. A dynamic analysis of the 2D shape showed
the viability of using the 2D shape in dynamic applications
such as plate dispensing and self-stabilization. A 3D KS
that produces a radial and tangential force was defined and
rendered, however, no static or dynamic physical verification
was performed. Similar static and dynamic behaviors are
expected in the radial and tangential directions. While
much of current KS is presented in this paper, much is left
to exploration and application of KS such as the physical
verification of 3D KS, formal definition of dynamic KS
behavior, and development of the proposed applications.
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