

Abstract The purpose of this project was to develop a

method of creating a virtual model from user exploration in a

tele-operated environment. T he virtual model is developed by a

creating a finite and discrete voxel matrix. The model

developed after sufficient exploration, would be replayed back

to the user with a force shading technique. T his voxel based

render ing system can possible be used to fill in extraneous time

delays in te le-operated systems.

I. INTRODUCTION
hen developing a virtual model by measuring a
surface rarely do you encounter a smooth and simple

surface. Finite and point based models are typical for data
retrieved from a real surface. This data is usually non-
uniform and can present issues when rendering these
surfaces haptically. The discrete points of the models can
create force discontinuities and gaps. Many algorithms have
been developed to render these forces by interpolating the
values of the nearest points, such as the methods proposed
by Kim and Sukhatme [1]. By comparing the force at the
current position within the virtual model with the nearest
points surrounding the current position, the rendered force
vectors reduce the discontinuities produced when using the
previous traditional single point rendering techniques.

 By applying these finite element rendering
techniques to a tele-operated environment, a sufficient
model can then be developed representing the surface can be
developed in real-time. The model development algorithm
produced in this paper can ultimately used to produce a
smooth and continuous surface within a static tele-operated
environment. When using a tele-operated system over a
variable time delay environment such as communication via
the internet. This voxel model can be used to smooth the
environment for the end user when the delay becomes too
great for the tele-operation to operate smoothly. The model
can be updated continuously when the data from the tele-
operated environment is available.

 The algorithm uses discrete points at regular
intervals to store rendered force data pertaining to the forces
generated when an object is contacted within the tele-
operated environment. Using points at regular intervals
provides unique advantages when developing the model,
such as:

 Reducing computational time for finding the
nearest point.

 Data can easily be called upon using three

dimensional arrays defined by the physical position
within the model.

 Models can be continuously and quickly updated
and smoothed as they are received from the tele-
operated environment.

II. RELATED WORK

A. Background
When working within the defined workspace, the

model of the surface is developed when the force generated
reach a value over a pre-defined threshold. This is similar to
the work completed by Mukherjee in which they developed
algorithms for an artificially intelligent tele-operated robot
object detection system for its defined workspace using a
Volumetric modeling [2]. Voxels are volumetric pixels
defined by specific positions within the work space. These
Voxels can store object data such as the force components as
well as normal vector components to the surface at that
particular point. Mukherjee subsequently used these Voxels
to store data about objects within the workspace so the tele-
operated robotic arm can move within the workspace and
avoid contacting these objects.

 Some of the techniques considered before developing
this algorithm were the finite polygons methods developed
by Kim and Sukhatme [3]. These polygons were defined by
a minimum of three points to create the surface normal.
They subsequently applied their previous methods of force
smoothing and shading techniques to these polygonal
surfaces removing the force discontinuities present when
only rendering the single normal to the polygon. This
method was difficult to reproduce using the Voxel method
since it would require finding the closest previously defined
point within the Voxel matrix, finding the normal of the
polygon at the current position, finding the adjacent
polygons, calculating and then smoothing the target
polygon s normal with the surrounding polygons and their
respective normal vectors. This is an acceptable method for
uses such as individual model development where the
individual polygon positions are initially defined as well as
which points they are connected to. The object will have a
static number of polygons and only allows for updates of the
position of the corresponding nodes. With the Voxel
method, points are only defined when the force threshold is
reached. Therefore, the number of polygons would be
extremely variable within the Voxel matrix and would
require continuous updates until every Voxel is defined. This
would realistically never be achieved because the only
Voxels should be generated at the surface of the object. This
method would require additional computational time which

Development of Volumetr ic Models in a Tele-operated Environment

with Force Smoothing Playback

Eric W. Petersen

W

could be better allotted to other processes such as the force
rendering and smoothing.

B. Computational Methods
Much of the computation when using the proposed

method in this paper, places the computational load in
looking up values and modifying them in place of
calculating the exact solution for each subsequent iteration.
Some of the computational techniques proposed by El-Far,
and Georganas were considered for this program [4]. Their
methods included solving systems of linear equations for a
finite element deformation model. The computational load is
highly dependent on the number of elements within the
array. If a deformable surface was modeled, an elastic
component would be required for each component within the
Voxel array. A system of linear equations would need to be
solved in order to define this component for each of the
defined Voxels. This elastic model would most likely be the
subject of future work. By allowing the force values to be
searched for instead of computed for the Voxel matrix,
computational power can be allotted for solving the system
of linear equations only if needed.

III. IMPLEMENTATION OF THE VOXEL MATRIX WITH TELE-
OPERATION MODEL DEVELOPMENT

The tele-
development of this algorithm utilized the position exchange
equation (eqn. 1) which provided force feedback for the
master Omni. When operating in playback mode an
additional component was added into the equation in order
to provide the required force obtained from the Voxel matrix
(eqn. 2).

)()(smdmsmpmm XXKXXKF (eqn. 1a)
)()(smdssmpss XXKXXKF (eqn. 1b)

)(
)()(

smdm

smpmmproxynvoxpositiom

XXK
XXKXXFnF (eqn. 2a)

)()(smdssmpss XXKXXKF (eqn. 2b)
The normalized force vector and the distance between

the defined proxy position and the master position are used
to replay the forces defined by the Voxel matrix. This allows
for the incorporation of the forces experienced by the end
user set by the current position within the Voxel matrix.

A. Development of the voxel matrix
Initially, the program starts by loading a blank voxel

matrix. This is accomplished by using the struct() command
and defining a three dimensional array of these structures.
The three dimensional array is used to define the position
within the array as well as the size and shape of the
workspace. It was not necessary to define the actual position
of each voxel within the struct() command since it was
handled by the three dimensional array. Only seven values
were stored within each voxel, the three components
(denoted as fx, fy, fz) of the force vector, a single bit
character which allows for quick access indicating whether
or not that particular voxel has been set, and finally three

points for the normalized unit vector components (denoted
as n_fx, n_fy, n_fz) to the applied force. Since the position
values received from the Omni are in units of millimeters, a
voxel was placed at regular intervals of one millimeter. The
matrix used in this program was set for a workspace of 10 x
10 x 10 centimeters. This resulted in one million data points
with a total of six double variables and one bit variable each.
The origin of the voxel matrix was defined through constant
at the beginning of the program locating the array within the
Omni s workspace. Also, a scaling of the voxel resolution is
possible by multiplying the integer values from the three
dimensional array by a scaling factor. This was not
necessary for this program since the have three un-
actuated degrees of freedom which hinder the ability to
operate efficiency in tele-operation.

B. Recording forces and setting values to the voxel matrix
If the user is exploring the tele-operated environment

via the master Omni and comes into contact with an object,
the slave is prevented from reaching its desired position
mimicking the master s position. This difference in position
between the master and the slave Omni allows for a force to
be generated proportional to the difference. The forces
generated are measured and compared to a preset threshold
value. If this generated force is greater than the threshold
value, the
position of the
slave is measured
and truncated, as
shown in figure 1.
The truncated
position value
provides an
integer which can
then be used to
directly call the
particular voxel
in which the
Omni is in
contact with.

If the
position of the
Omni is within
the predefined
voxel array, then
the program
checks to see if
the value has
been previously
set. The value is
either set for the
first time or
averaged with the
previous value.
The averaging of

this force vector
will help reduce
the error between

F igure 1: F low chart for the

development of the Voxel mat rix.

the true normal to the surface and the measured value. These
errors can arise from the dynamics of the system or the
friction on the surface of the object. It is also worth
mentioning that some of unintended triggered Voxels can be
avoided by either placing a velocity or an acceleration
threshold on top of the force threshold which would only
allow for the Voxels being set only under specific
conditions. A velocity threshold was employed when testing
this algorithm but was ignored for two reasons; first the user
rarely would exceed this threshold value while exploring the
remote surface and second if the motion of the Omni was
quickly reversed, the forced accelerating the Omni would be
greater than the force threshold while the velocity would
momentarily dip below the velocity threshold. A much better
alternative would be to set an acceleration threshold, but
since the Omni only reads position values the acceleration
would require a second derivative of the position. This
requires a minimum of three cycles in the callback loop and
would create a large amount of error.

C . Playback of the rendered forces and applying force
feedback to the user

Once a sufficient number of Voxels have been
defined by the user exploring the surface, the resulting
forces can be generated and displayed to the user. At the
termination of
the recording
loop, the
direction of each
force vector is
reversed and
normalized. The
file is then saved
with all seven
values of each
voxel. This is the
most
computationally
demanding part
of the algorithm,
therefore it is
held back until
the end of the
recording loop.
Once these
values are
defined the
playback of these
rendered normal
forces can then
be generated.

The file
is first loaded
into the array
since reading straight from the output file would take too
long. When the file completes its loading procedure, the
Omni s continue operating in position exchange, except now
the equation contains the value for the nearest defined point
within the array. The algorithm first checks to see if the

position is within the workspace. If the position is outside of
the voxel matrix, force direction components are simply set
to zero which allows the master and slave to continue
operating in position exchange operation.

Once the position is within the voxel array, the
position is checked against the array to see if has been
previously defined. If the particular value has not been set,
the algorithm is checked to see if another value of the array
has been set within the pre-specified end effector size.
Instead of calculating the distance to the nearest point for
every point within the maximum size of the end effector,
another three dimensional array was employed. Using
MATLAB, a simple bubble sort method was used to sort
every point within a 10 x 10 x 10 millimeter array from
shortest to the furthest distance with respect to the center
point of the array (example of this code can be found in the
Appendix). This yielded a thousand x, y, z points which can
quickly be checked against in order to find the closest point.
This results in the main program searching in circular
fashion around the end effector and stopping when a set
value is found.

Once the closest point has been located, it is then set
as the proxy position. This proxy position is used to generate
a proportional response in the direction of the normal force
vector at that proxy position relative to the position of the
master Omni. Also, using the a proxy position the force
direction is averaged with the surrounding defined force
vectors in order to smooth the forces experienced by the end
user.

F igure 3: Testing Apparatus. Simple shapes and

extended end effector.
Then a simple if then statement is employed to check

the direction between the force vector and the vector
developed by the difference between the endpoint and the
proxy position. For example, if the differences between the
position components are in the negative direction and the
normal components are also in the negative direction the
multiplied result is positive. Summarily, if the position
component is positive and the force vector is positive the
resultant is positive. Only when the position and force
components are opposite will a negative result be produced.
If the result is found negative, the force component is set to
zero. This avoids producing a force value within the position

F igure 2: F low chart for virtual surface

playback from the Voxel mat rix.

exchange equation the case where you are above the defined
voxel array. If this were allowed, the user would feel a force
pulling the user back to the defined proxy position.

IV. RESULTS
The voxel array has proven to be successful in

properly displaying the forces back to the user.
Unfortunately, the accuracy was highly dependent on the
number of Voxels generated when the user explored the
object. If an area with only a few defined Voxels were
found, the resulting forces were not very smooth. This effect
could have been accounted for by simply letting the user
explore the surface for a longer period of time. This would
generate more points in which to reference, removing the
discontinuities experienced by the end user.

The Omni s were not particularly suited for this task.
Since only three degrees of freedom were available for
control, the objects tested were very limited (Figure 3). A
modified end effector was employed through an attachment
to reduce the amount of error caused by the Omni s end
effector (Figure 3). Also, the forces generated by the Omni s
were very low which made the friction forces a determining
factor in the development of the appropriate force vector.

The resulting forces and the defined Voxels were
rendered graphically using MATLAB (Figure 5). Figure 5
also shows the skewing of the cylindrical object due to the
extension of the working length.

V. FUTURE WORK
Some of the future work includes reducing the

amount of error generated by the sparse voxel matrix. This
can be reduced further and produce a more homogeneous
response for the end user.

Instead of running this algorithm as two different
programming modes, the voxel matrix can be employed in
real-time in order to test if the voxel matrix would be an
appropriate stand in if the delay between the master and
slave Omni s were increased. This could prove to be a good
compromise for the effects to extraneous delays in
communication time. Ultimately this method could produce
a smoother experience for the end user.

F igure 4: Cylindrical object rendered in M A T L A B .

F igure 5: Slave Omni in operation.

F igure 6: M easured forces represented by vectors in

green.

F igure 7: C lose up rendering of the corresponding

normal unit vectors for each voxel.

ACKNOWLEDGMENT
Special thanks to Dr. Reed for the advisement and

assistance in generating the necessary code.

REFERENCES
[1] Laehyun Kim; Kyrikou, A.; Sukhatme, G.S.; Desbrun, M.; , "An

implicit-based haptic rendering technique," Intelligent Robots and

Systems, 2002. IEEE/RSJ International Conference on , vol.3, no., pp.
2943- 2948 vol.3, 2002.

[2] Mukherjee, J.K.; , "AI based tele-operation support through voxel
based workspace modeling and automated 3D robot path
determination," TENCON 2003. Conference on Convergent
Technologies for Asia-Pacific Region , vol.1, no., pp. 305- 309 Vol.1,
15-17 Oct. 2003.

[3] Laehyun Kim; Sukhatme, G.S.; Desbrun, M.; , "A haptic-rendering
technique based on hybrid surface representation," Computer

Graphics and Applications, IEEE , vol.24, no.2, pp. 66- 75, March-
April 2004.

[4] El-Far, N.R.; Georganas, N.D.; El Saddik, A.; , "An algorithm for
haptically rendering objects described by point clouds," Electrical and

Computer Engineering, 2008. CCECE 2008. Canadian Conference

on , vol., no., pp.001443-001448, 4-7 May 2008.

APPENDIX
C++ Code.

!"#$%&'()*+,'"-./0)
!"#$%&'()*$-#"-./0)
!"#$%&'()*'"1($,./0)
!"#$%&'()*234/'./0)
!"#$%&'()*2354/'&611-1./0)
!"#$%&'()*2354/'&7($,-1./0)
!"#$%&'()*8+,1(9:0)
!"#$%&'()*"-+,1(9:0)
!"#$%&'()*++,1(9:0)
!"#$%&'()*:9,/./0)
!"#$%&'()*,":(./0)
)
&+"#;)#9:(+<9$()+,'=)
)
$-#+,)"#,)+">()?)@AA=))) 44B">()-8),/()C-D(%):9,1"D)
$-#+,)'-&E%()8F,/1(+/-%')?)G=)44H-1$()I/1(+/-%')
$-#+,)'-&E%()CF,/1(+/-%')?)A=)447(%-$",J)I/1(+/-%')KL-,)&+('M)
$-#+,)"#,)(#'F(88)?)N=))) 446#')(88($,-1)19'"&+)"#)<%9JE9$O):-'()P+</(1()-1)E-D)
"#,)1($)?)A=))))) 44Q($-1')R-'()791"9E%()P)@S1($-1'"#;)AS<%9JE9$O)
'-&E%()O8)?)A.T=)))) 44U-+","-#)6D$/9#;()B<1"#;)V-#+,9#,)
'-&E%()E)?)A.AAAW=)))) 44U-+","-#)6D$/9#;()39:<"#;)V-#+,9#,)
"#,)DX)JX)>=))))) 44U-+","-#)791"9E%(+))
$-#+,)"#,)-1";"#FD)?)PTAX)-1";"#FJ)?)PNAX)-1";"#F>)?)PWN=)447-D(%)-1";"#)8-1),/()+%9C()-:#")
"#,)<1-DJFDX)<1-DJFJX)<1-DJF>=))44U1-DJ)<-+","-#)C91"9E%(+)
+,1"#;)#9:(=))))) 44B,1"#;)791"9E%()8-1)8"%()+9C"#;)
"#,)#(91(+,<-"#,Y@AAAZYGZ=)) 44[119J),-)8"#'),/()#(91(+,)<-"#,)
"#,)"+Q&##"#;=))))) 44I-;;%(+),/()B$/('&%(1)
'-&E%()\FD)?)AX)\FJ)?)AX)\F>)?)A=44\(#;,/)
)
+,1&$,)C-D)])
) 8%-9,))8DX)8JX)8>X)#F8DX)#F8JX)#F8>==)
) E--%)"+B(,=)
^=)
44L(('+),/()8F_),(1:),-)"#<&,),/()8-1$()
44[C(19;(+)9#')+(,+),/()8-1$(+)
8%-9,)B(,8-1$(+FDKC-D)'X)8%-9,)8FDM])
) 44V/($O)"8)8-1$()C9%&()"+)>(1-)
) "8)K'.8D)??)AM])
)) '.8D)?)8FD=)
) ^)
) 44[C(19;(+),/()1($"(C(')8-1$(+)
) 1(,&1#KA.N)_)K'.8D)`)8FDMM=)
^)
8%-9,)B(,8-1$(+FJKC-D)'X)8%-9,)8FJM])
) 44V/($O)"8)8-1$()C9%&()"+)>(1-)
) "8)K'.8J)??)AM])
)) '.8J)?)8FJ=)
) ^)
) 44[C(19;(+),/()1($"(C(')8-1$(+)
) 1(,&1#KA.N)_)K'.8J)`)8FJMM=)
^)
8%-9,)B(,8-1$(+F>KC-D)'X)8%-9,)8F>M])
) 44V/($O)"8)8-1$()C9%&()"+)>(1-)
) "8)K'.8>)??)AM])
)) '.8>)?)8F>=)
) ^)
) 44[C(19;(+),/()1($"(C(')8-1$(+)

