
  

 

Abstract The purpose of this project was to develop a 

method of creating a virtual model from user exploration in a 

tele-operated environment. T he virtual model is developed by a 

creating a finite and discrete voxel matrix. The model 

developed after sufficient exploration, would be replayed back 

to the user with a force shading technique. T his voxel based 

render ing system can possible be used to fill in extraneous time 

delays in te le-operated systems.  

I. INTRODUCTION 
hen developing a virtual model by measuring a 
surface rarely do you encounter a smooth and simple 

surface. Finite and point based models are typical for data 
retrieved from a real surface. This data is usually non-
uniform and can present issues when rendering these 
surfaces haptically. The discrete points of the models can 
create force discontinuities and gaps. Many algorithms have 
been developed to render these forces by interpolating the 
values of the nearest points, such as the methods proposed 
by Kim and Sukhatme [1]. By comparing the force at the 
current position within the virtual model with the nearest 
points surrounding the current position, the rendered force 
vectors reduce the discontinuities produced when using the 
previous traditional single point rendering techniques. 

 By applying these finite element rendering 
techniques to a tele-operated environment, a sufficient 
model can then be developed representing the surface can be 
developed in real-time. The model development algorithm 
produced in this paper can ultimately used to produce a 
smooth and continuous surface within a static tele-operated 
environment. When using a tele-operated system over a 
variable time delay environment such as communication via 
the internet. This voxel model can be used to smooth the 
environment for the end user when the delay becomes too 
great for the tele-operation to operate smoothly. The model 
can be updated continuously when the data from the tele-
operated environment is available.  

 The algorithm uses discrete points at regular 
intervals to store rendered force data pertaining to the forces 
generated when an object is contacted within the tele-
operated environment. Using points at regular intervals 
provides unique advantages when developing the model, 
such as: 

 Reducing computational time for finding the 
nearest point. 

 Data can easily be called upon using three 

 
 

dimensional arrays defined by the physical position 
within the model.  

 Models can be continuously and quickly updated 
and smoothed as they are received from the tele-
operated environment.  

II. RELATED WORK 

A. Background 
When working within the defined workspace, the 

model of the surface is developed when the force generated 
reach a value over a pre-defined threshold. This is similar to 
the work completed by Mukherjee in which they developed 
algorithms for an artificially intelligent tele-operated robot 
object detection system for its defined workspace using a 
Volumetric modeling [2]. Voxels are volumetric pixels 
defined by specific positions within the work space. These 
Voxels can store object data such as the force components as 
well as normal vector components to the surface at that 
particular point. Mukherjee subsequently used these Voxels 
to store data about objects within the workspace so the tele-
operated robotic arm can move within the workspace and 
avoid contacting these objects.  

  Some of the techniques considered before developing 
this algorithm were the finite polygons methods developed 
by Kim and Sukhatme [3]. These polygons were defined by 
a minimum of three points to create the surface normal. 
They subsequently applied their previous methods of force 
smoothing and shading techniques to these polygonal 
surfaces removing the force discontinuities present when 
only rendering the single normal to the polygon. This 
method was difficult to reproduce using the Voxel method 
since it would require finding the closest previously defined 
point within the Voxel matrix, finding the normal of the 
polygon at the current position, finding the adjacent 
polygons, calculating and then smoothing the target 
polygon s normal with the surrounding polygons and their 
respective normal vectors. This is an acceptable method for 
uses such as individual model development where the 
individual polygon positions are initially defined as well as 
which points they are connected to. The object will have a 
static number of polygons and only allows for updates of the 
position of the corresponding nodes. With the Voxel 
method, points are only defined when the force threshold is 
reached. Therefore, the number of polygons would be 
extremely variable within the Voxel matrix and would 
require continuous updates until every Voxel is defined. This 
would realistically never be achieved because the only 
Voxels should be generated at the surface of the object. This 
method would require additional computational time which 
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could be better allotted to other processes such as the force 
rendering and smoothing.  

B. Computational Methods 
Much of the computation when using the proposed 

method in this paper, places the computational load in 
looking up values and modifying them in place of 
calculating the exact solution for each subsequent iteration. 
Some of the computational techniques proposed by El-Far, 
and Georganas were considered for this program [4]. Their 
methods included solving systems of linear equations for a 
finite element deformation model. The computational load is 
highly dependent on the number of elements within the 
array. If a deformable surface was modeled, an elastic 
component would be required for each component within the 
Voxel array. A system of linear equations would need to be 
solved in order to define this component for each of the 
defined Voxels. This elastic model would most likely be the 
subject of future work. By allowing the force values to be 
searched for instead of computed for the Voxel matrix, 
computational power can be allotted for solving the system 
of linear equations only if needed. 

III. IMPLEMENTATION OF THE VOXEL MATRIX WITH TELE-
OPERATION MODEL DEVELOPMENT 

The tele-
development of this algorithm utilized the position exchange 
equation (eqn. 1) which provided force feedback for the 
master Omni. When operating in playback mode an 
additional component was added into the equation in order 
to provide the required force obtained from the Voxel matrix 
(eqn. 2).  
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The normalized force vector and the distance between 

the defined proxy position and the master position are used 
to replay the forces defined by the Voxel matrix. This allows 
for the incorporation of the forces experienced by the end 
user set by the current position within the Voxel matrix.  

A. Development of the voxel matrix 
Initially, the program starts by loading a blank voxel 

matrix. This is accomplished by using the struct() command 
and defining a three dimensional array of these structures. 
The three dimensional array is used to define the position 
within the array as well as the size and shape of the 
workspace. It was not necessary to define the actual position 
of each voxel within the struct() command since it was 
handled by the three dimensional array. Only seven values 
were stored within each voxel, the three components 
(denoted as fx, fy, fz) of the force vector, a single bit 
character which allows for quick access indicating whether 
or not that particular voxel has been set, and finally three 

points for the normalized unit vector components (denoted 
as n_fx, n_fy, n_fz) to the applied force. Since the position 
values received from the Omni are in units of millimeters, a 
voxel was placed at regular intervals of one millimeter. The 
matrix used in this program was set for a workspace of 10 x 
10 x 10 centimeters. This resulted in one million data points 
with a total of six double variables and one bit variable each. 
The origin of the voxel matrix was defined through constant 
at the beginning of the program locating the array within the 
Omni s workspace. Also, a scaling of the voxel resolution is 
possible by multiplying the integer values from the three 
dimensional array by a scaling factor. This was not 
necessary for this program since the  have three un-
actuated degrees of freedom which hinder the ability to 
operate efficiency in tele-operation.  

B. Recording forces and setting values to the voxel matrix 
If the user is exploring the tele-operated environment 

via the master Omni and comes into contact with an object, 
the slave is prevented from reaching its desired position 
mimicking the master s position. This difference in position 
between the master and the slave Omni allows for a force to 
be generated proportional to the difference. The forces 
generated are measured and compared to a preset threshold 
value. If this generated force is greater than the threshold 
value, the 
position of the 
slave is measured 
and truncated, as 
shown in figure 1. 
The truncated 
position value 
provides an 
integer which can 
then be used to 
directly call the 
particular voxel 
in which the 
Omni is in 
contact with.  

If the 
position of the 
Omni is within 
the predefined 
voxel array, then 
the program 
checks to see if 
the value has 
been previously 
set. The value is 
either set for the 
first time or 
averaged with the 
previous value. 
The averaging of 

this force vector 
will help reduce 
the error between 

F igure 1: F low chart for the 

development of the Voxel mat rix. 



  

the true normal to the surface and the measured value. These 
errors can arise from the dynamics of the system or the 
friction on the surface of the object. It is also worth 
mentioning that some of unintended triggered Voxels can be 
avoided by either placing a velocity or an acceleration 
threshold on top of the force threshold which would only 
allow for the Voxels being set only under specific 
conditions. A velocity threshold was employed when testing 
this algorithm but was ignored for two reasons; first the user 
rarely would exceed this threshold value while exploring the 
remote surface and second if the motion of the Omni was 
quickly reversed, the forced accelerating the Omni would be 
greater than the force threshold while the velocity would 
momentarily dip below the velocity threshold. A much better 
alternative would be to set an acceleration threshold, but 
since the Omni only reads position values the acceleration 
would require a second derivative of the position. This 
requires a minimum of three cycles in the callback loop and 
would create a large amount of error.  

C . Playback of the rendered forces and applying force 
feedback to the user 

Once a sufficient number of Voxels have been 
defined by the user exploring the surface, the resulting 
forces can be generated and displayed to the user. At the 
termination of 
the recording 
loop, the 
direction of each 
force vector is 
reversed and 
normalized. The 
file is then saved 
with all seven 
values of each 
voxel. This is the 
most 
computationally 
demanding part 
of the algorithm, 
therefore it is 
held back until 
the end of the 
recording loop. 
Once these 
values are 
defined the 
playback of these 
rendered normal 
forces can then 
be generated. 

The file 
is first loaded 
into the array 
since reading straight from the output file would take too 
long. When the file completes its loading procedure, the 
Omni s continue operating in position exchange, except now 
the equation contains the value for the nearest defined point 
within the array. The algorithm first checks to see if the 

position is within the workspace. If the position is outside of 
the voxel matrix, force direction components are simply set 
to zero which allows the master and slave to continue 
operating in position exchange operation.  

Once the position is within the voxel array, the 
position is checked against the array to see if has been 
previously defined. If the particular value has not been set, 
the algorithm is checked to see if another value of the array 
has been set within the pre-specified end effector size. 
Instead of calculating the distance to the nearest point for 
every point within the maximum size of the end effector, 
another three dimensional array was employed. Using 
MATLAB, a simple bubble sort method was used to sort 
every point within a 10 x 10 x 10 millimeter array from 
shortest to the furthest distance with respect to the center 
point of the array (example of this code can be found in the 
Appendix). This yielded a thousand x, y, z points which can 
quickly be checked against in order to find the closest point. 
This results in the main program searching in circular 
fashion around the end effector and stopping when a set 
value is found. 

Once the closest point has been located, it is then set 
as the proxy position. This proxy position is used to generate 
a proportional response in the direction of the normal force 
vector at that proxy position relative to the position of the 
master Omni. Also, using the a proxy position the force 
direction is averaged with the surrounding defined force 
vectors in order to smooth the forces experienced by the end 
user. 

 
F igure 3: Testing Apparatus. Simple shapes and 

extended end effector. 
Then a simple if then statement is employed to check 

the direction between the force vector and the vector 
developed by the difference between the endpoint and the 
proxy position. For example, if the differences between the 
position components are in the negative direction and the 
normal components are also in the negative direction the 
multiplied result is positive. Summarily, if the position 
component is positive and the force vector is positive the 
resultant is positive. Only when the position and force 
components are opposite will a negative result be produced. 
If the result is found negative, the force component is set to 
zero. This avoids producing a force value within the position 

F igure 2: F low chart for virtual surface 

playback from the Voxel mat rix. 



  

exchange equation the case where you are above the defined 
voxel array. If this were allowed, the user would feel a force 
pulling the user back to the defined proxy position.  

IV. RESULTS 
The voxel array has proven to be successful in 

properly displaying the forces back to the user. 
Unfortunately, the accuracy was highly dependent on the 
number of Voxels generated when the user explored the 
object. If an area with only a few defined Voxels were 
found, the resulting forces were not very smooth. This effect 
could have been accounted for by simply letting the user 
explore the surface for a longer period of time. This would 
generate more points in which to reference, removing the 
discontinuities experienced by the end user.  

The Omni s were not particularly suited for this task. 
Since only three degrees of freedom were available for 
control, the objects tested were very limited (Figure 3). A 
modified end effector was employed through an attachment 
to reduce the amount of error caused by the Omni s end 
effector (Figure 3). Also, the forces generated by the Omni s 
were very low which made the friction forces a determining 
factor in the development of the appropriate force vector.  

The resulting forces and the defined Voxels were 
rendered graphically using MATLAB (Figure 5). Figure 5 
also shows the skewing of the cylindrical object due to the 
extension of the  working length. 

V. FUTURE WORK 
Some of the future work includes reducing the 

amount of error generated by the sparse voxel matrix. This 
can be reduced further and produce a more homogeneous 
response for the end user.  

Instead of running this algorithm as two different 
programming modes, the voxel matrix can be employed in 
real-time in order to test if the voxel matrix would be an 
appropriate stand in if the delay between the master and 
slave Omni s were increased. This could prove to be a good 
compromise for the effects to extraneous delays in 
communication time. Ultimately this method could produce 
a smoother experience for the end user. 

  
F igure 4: Cylindrical object rendered in M A T L A B . 
 

 
F igure 5: Slave Omni in operation. 

 
F igure 6: M easured forces represented by vectors in 

green. 

 
F igure 7: C lose up rendering of the corresponding 

normal unit vectors for each voxel. 
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APPENDIX  
C++ Code. 
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