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Physical changes such as leg length discrepancy, the addition of a mass at the distal

end of the leg, the use of a prosthetic, and stroke frequently result in an asymmetric

gait. This paper presents a metric that can potentially serve as a benchmark to

categorize and differentiate between multiple asymmetric bipedal gaits. The combined

gait asymmetry metric (CGAM) is based on modified Mahalanobis distances, and it

utilizes the asymmetries of gait parameters obtained from motion capture and force

data recorded during human walking. The gait parameters that were used in this

analysis represent spatio-temporal, kinematic, and kinetic parameters. This form of a

consolidated metric will help researchers identify overall gait asymmetry by showing

them if the overall gait symmetry is improving and avoid the case where one parameter’s

symmetry is improving while another is getting worse. The CGAM metric successfully

served as a measure for overall symmetry with eleven different gait parameters and

successfully showed differences among gait with multiple physical asymmetries. The

results showed that mass at the distal end had a larger magnitude on overall gait

asymmetry compared to leg length discrepancy. It also showed that the combined effects

are varied based on the cancelation effect between gait parameters. The metric was also

successful in delineating the differences of prosthetic gait and able-bodied gait at three

different walking velocities.

Keywords: gait asymmetry, leg length discrepancy, distal mass, knee orthosis, prosthetic gait

1. INTRODUCTION

Human gait is a complex coordinated cyclic neuromuscular process that includes voluntary and
involuntary aspects (Zijlstra et al., 1995). However, this cyclic process is frequently impaired
following central nervous system damage, such as stroke, or physical changes, such as wearing
a prosthetic. Physical and neurological changes often result in an asymmetric gait because the
person’s muscles and/or control actions becomes inherently asymmetric. Typically, human gait is
represented by spatiotemporal, kinematic, and kinetic parameters obtained from analyzing motion
capture and force plate data (Winter, 1995). The purpose of this study is to present a simple but
versatile quantitative asymmetry metric that can be used to characterize the asymmetry of gait
patterns as a whole.

Gait parameters offer quantitative data that can represent a person’s gait. Using a quantitative
data driven analysis offers an unbiased evaluation of the effects of multiple physical asymmetries
that affect human gait. For this experimental study, the physical changes were selected based on
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the dynamic principles related to leg length and mass on a
periodic system. Under appropriate conditions two dissimilar
systems can be made to exhibit synchronized motion (Handzic
et al., 2015). Handzic et al. demonstrated that two double
pendulums with different masses at different locations and
different lengths can exhibit symmetric motion. Human legs can
be modeled as double pendulum systems, which allows for a
simplified explanation of their synchronized dynamics (McGeer,
1990). Discrepancies in leg lengths and lower limb amputation
disrupts natural propagation and dynamics that ultimately lead
to asymmetric gait patterns. Further, asymmetric effects are also
observed with changes in mass, such as the addition of external
mass or a prosthesis. The study presented here also includes the
effect of damping and stiffness at the knee to compare a larger
range of physical changes that are not limited to altering the
length and mass of limbs.

2. BACKGROUND

Previous research about asymmetric physical changes reveal
a range of different effects on a person’s gait. The literature
review for this study looked at various physical changes
such as leg length discrepancy (LLD), the addition of mass
at the distal end of the leg, amputation, and stroke. It is
important to remember that although these physical changes
affect every person differently, they can all be characterized
using the asymmetries of biomechanical gait parameters. It
is not uncommon to find similar effects on gait asymmetry
with different physical changes. To illustrate these differences
and similarities, this literature review also focused on prior
quantitative gait metrics and the algorithms used to discern
between different types of gait.

2.1. Gait Patterns
Approximately 0.001% of people have some form of corrective
gear due to LLD (Guichet et al., 1991). LLD may cause
serious long-term consequences based on several variables
such as the design of corrective devices, age, weight, posture,
and level of activity (Gurney, 2002). An increase of 2 cm
or 3.7% in leg length difference has dramatic overall gait
asymmetry, especially in vertical reaction forces during push
off and initial contact (Kaufman et al., 1996). Further, LLD
causes abnormal changes in foot loading patterns and increases
in joint torques/moments, which could lead to long-term
effects (Perttunen et al., 2004). Finally, studies have also shown
that LLD causes more overall strain on the body and leads to
increased expenditure of energy (Gurney et al., 2001).

Limb mass, like limb length, plays an integral role in the
dynamics of human walking. Adding mass on limbs, especially
toward the distal end, brings about increases in metabolic activity
and disrupts spatiotemporal symmetry (Browning et al., 2007).
Adding mass at the distal end has been shown to force the user
to change their walking posture by moving their arms in order to
maintain balance (Donker et al., 2002). These effects may cause
adverse changes in walking patterns in able-bodied symmetric
individuals, but the addition of weight on the non-paretic limbs
of stroke victims has shown improvement in walking speed, step

length, cadence, and weight bearing in the paretic limb (Regnaux
et al., 2008).

Studies show that prosthetic users exhibit less effcient and
unnatural gait patterns (Gitter et al., 1995; Hoffman et al., 1997).
This inefficiency is more evident in transfemoral amputees than
transtibial amputees, which results in the users exerting a great
deal of effort to compensate for unwanted motions (Huang et al.,
1979). In some cases, simple solutions can correct irregular gait.
When individuals with ataxia wore a 2 lb mass on their chest,
unstable motions significantly decreased and the gait was more
steady and efficient (Gibson-Horn, 2008). Since amputees are
physically asymmetric, bringing about efficient and symmetric
gait depends on multiple factors such as length, weight of
prosthesis, type of socket, length of residual limb, etc. A study
on unilateral transtibial prosthetic users shows that as the mass of
the prosthetic gets closer to their intact shank weight, the subjects
gait becomes more asymmetric (Mattes et al., 2000).

Stroke is one of the leading causes of disability among adults,
affecting ambulation, performance of activities of daily living,
communication, and cognition. Physical independence with
respect to walking is characterized by improvement of walking
function as defined by stroke survivors (Bohannon et al., 1991).
However, only a minority of people (7–22%) are able to regain
sufficient function to be considered independent community
ambulators post stroke (Hill et al., 1997; Lord et al., 2004).

Gait retraining post-stroke typically focuses on two main
outcome measures: velocity and symmetry. Walking velocity is
used as an indicator of overall gait performance and can be
used to differentiate the levels of disability among the stroke
patient population (Perry et al., 1995; Lord et al., 2004). A
gait speed of 0.8m/s is considered the required minimum for
community ambulation (Perry et al., 1995; Bowden et al., 2008),
and typically people ambulate with a mean gait velocity of
1.14m/s (Lord et al., 2004). Gait symmetry, in contrast, is used as
a measure of gait quality (Dewar and Judge, 1990; Patterson et al.,
2008). Normal gait measured among able-bodied individuals was
found to be fairly symmetric in spatiotemporal, kinematic, and
dynamic parameters with a range of up to 4–6% asymmetry
between the limbs (Herzog et al., 1989; Titianova and Tarkka,
1995).

Gait after stroke becomes asymmetric (or hemiparetic) as
a consequence of altered neuromuscular signals affecting leg
motor areas, typically hyper extension at the knee and reduced
flexion at the hip, knee, and ankle (Brandstater et al., 1983;
Wall and Turnbull, 1986; Kelly-Hayes et al., 2003). Hemiparetic
gait is characterized by a significant asymmetry in temporal
(e.g., time spent in double-limb support) and spatial (e.g.,
step length) measures of interlimb coordination (Brandstater
et al., 1983; Titianova and Tarkka, 1995; Balasubramanian
et al., 2007). Propulsive force of the paretic limb is also
reduced compared to the non-paretic limb, as are work and
power of the paretic plantar flexors (Bowden et al., 2006;
Balasubramanian et al., 2007). The significant decrease in
propulsive force results in smaller overall step lengths, which in
turn affects the patient’s gait velocity. Finally, vertical ground
reaction forces (GRFs) are decreased on the paretic limb
relative to the non-paretic limb (Kim and Eng, 2003), reflecting
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diminished weight bearing and balancing capabilities by the
paretic limb.

When an individual with an asymmetric impairment walks
with symmetric step lengths, other aspects of gait become
asymmetric, such as the forces in the joints (Carpes et al., 2010;
Handzic et al., 2015), the amount of time spent on each leg (Kim
and Eng, 2003), and other temporal variables (Sadeghi et al.,
2000; Highsmith et al., 2010), all of which can be detrimental to
efficiency and long-term viability. Understanding how symmetry
affects function could change the fundamental nature of clinical
gait rehabilitation. The results from this research could also help
tailor rehabilitation treatments to target each person’s specific
impairment. An overall analysis of multiple gait parameters can
bring equilibrium to the different, and sometimes conflicting,
requirements of gait. In order to distinguish and characterize
the effects of multiple gait parameters, we use metrics that
consolidate and quantify the overall change in gait. This paper
demonstrates the effectiveness of these quantitative gait metrics
in classifying multiple physical asymmetric changes.

2.2. Gait Metrics
Gait metrics have been in use clinically to evaluate a
subject’s progress throughout their rehabilitation process.
These metrics can be classified based on the type of
information required, which is of two types: qualitative
(Steffen et al., 2002; McConvey and Bennett, 2005) and
quantitative (Schutte et al., 2000; Schwartz and Rozumalski,
2008; Rozumalski and Schwartz, 2011). Most metrics focus either
on kinetics or kinematics in order to categorize various walking
patterns. However, there are some that can perform the analysis
utilizing both kinetic and kinematic parameters (Chester et al.,
2007; Hoerzer et al., 2015). Gait metrics have also employed
statistical techniques such as principle component analysis
(PCA) and singular value decomposition (SVD) to reduce
the dimensionality of the biomechanical parameters (Muniz
and Nadal, 2009). After processing the dataset, either the
Euclidean or Mahalanobis distances (Muniz and Nadal, 2009)
are found, which ultimately results in the score for the metric.
Previous studies used Mahalanobis distances in conjunction
with PCA to analyze kinematic and specific loading at knee
joints. The precursor to this research study showed that the
combined gait asymmetry metric (CGAM) used a symmetry
index in conjunction with Mahalanobis distances. Without the
restrictions of dimensionality reduction, CGAM served as a
versatile gait asymmetry metric (Ramakrishnan et al., 2016).

3. METHODS

In order to analyze multiple asymmetric physical changes using
gait metrics, two distinct datasets were collected from eleven
different types of physical alterations. The physical alterations
include a prosthesis with two different sockets on an amputee,
healthy individuals with eight combinations of leg length and
ankle masses fitted to the non-dominant leg, and a stroke
simulator. The distinct datasets for the alterations were collected
on amputee and non-amputee populations. The amputee data
was collected while walking at three different speeds on two types

TABLE 1 | Participant information.

Parameter Able-bodied Prosthetic user

(10 subjects) (1 subject)

Age (years) Range: 18–28 36

Mean: 22.2 and std: 3.2

Height Range: 155–196 cm 162.5 cm

Mean: 171.2 cm and std: 11.44 cm

Weight Range: 48.08–82.55 kg 46 kg

Mean: 69.2 kg and std: 11.34 kg

Leg length Range: 84–108 cm 84 cm

Mean: 94 cm and std: 6.7 cm

Walking speed Range: 1.1–1.5m/s 0.5–1.3m/s

Mean: 1.27m/s and std: 0.13m/s

Gender 5 male and 5 female 1 female

of sockets. The data collected on able-bodied subjects includes all
of the perturbations.

3.1. Participants
The participants for this experiment consisted of 10 able-bodied
individuals and a transfemoral prosthetic user who walked with
two different sockets. Table 1 describes the subject population.
Both studies were conducted under approved University of South
Florida IRB protocols. The subjects provided both informed
and written consents to take part in the experiments. The
transfemoral amputee was selected because the subject was a
high functioning transfemoral prosthetic user and can walk at
speeds that are comparable to able-bodied subjects. For the data
analysis, we consider the prosthetic user to be two different
subjects because the change in sockets alters the subject’s gait
to a large extent. The study involved the subject walking at 3
different speeds using 2 different sockets: the vacuum assisted
suspension (VAS) brimless socket (Klute et al., 2011) and ischial
ramus containment (IRC) (Kahle, 2013).

The able-bodied individuals had no prior injuries that would
alter their walking patterns. The subject’s walking speeds were
determined by a 10 m walk test after which the height, weight, leg
length, and age of each individual participant were recorded. The
participants were put through a series of randomized increments
of leg lengths, addition of masses at distal end, and a combination
of both effects on the same leg, which was the left leg in
all cases (Muratagic et al., 2017). Table 2 shows the various
perturbations of the experiment. Finally, the stroke simulator
was fitted on their dominant side, which was the right leg for all
participants.

3.2. Experimental Apparatus
The experimental data was collected in two separate trials,
one on a single amputee and one on 10 able-bodied subjects.
The motion capture and force plate data was collected using
the Computer Assisted Rehabilitation Environment (CAREN),
which was developed by Motek Medical, Netherlands, shown in
Figure 1. The CAREN system incorporates a ten-camera Vicon
(Edgewood, NY) motion capture system, 6◦ of freedom motion
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TABLE 2 | Experimental procedure.

Trial type Perturbation Order Side

Prosthetic trial 0.5m/s In order Right

0.9m/s leg

1.3m/s

Able-body 0.5m/s In order N/A

0.9m/s

1.3m/s

Able-body Leg length-non-weight-non Left

Leg length-big-weight-big leg

Leg length-small-weight-small

Leg length-small-weight-non

Leg length-big-weight-non Randomized

Leg length-non-weight-small

Leg length-non-weight-big

Leg length-small-weight-big

Leg length-big-weight-small

Able-body With stroke simulator In order Right

After stroke simulator leg

base developed byMOOG, immersive 180◦ panaromic screen for
virtual reality environment, split belt treadmill, and continuous
force plate systems developed by Bertec.

3.3. Experimental Procedure
The data for the prosthetic trial was collected using 30 reflective
markers, which can be seen in Figure 2. This marker set was
used to collect extensive data on the lower and upper body
dynamics of the amputee as part of another study. In this
study we only use the lower limb markers out of the 30 for
the gait analysis while the others are used in another analysis.
The unilateral right transfemoral amputee used two prostheses,
shown in Figures 3B,C, with different socket types, and all other
components were identical. The amputee walked on both sockets
at three different speeds: 0.5, 0.9, and 1.3m/s. This was done to
have a range of cadences that can represent both prosthetic and
able-bodied users. The able-bodied subjects also walked at these
three speeds for direct comparison. The socket systems used in
the prosthesis were the IRC and VAS (Kahle et al., 2016). The
IRC socket is designed to reduce pistoning and increase stability,
but compromises on comfort while the VAS is designed more for
comfort and aims to be dynamically efficient.

The able-bodied subjects were put through a series of 9
asymmetric changes, shown in Figures 3D–L, and a baseline
symmetric gait, shown in Figure 3A. The subject’s height, weight,
leg length, and walking speed were recorded before beginning
the experiment. The walking speed of the subject is recorded
using a 10 m walk test over ground. This walking speed was the
constant velocity at which the subject walked for the duration of
the trials, except for the three different speeds discussed above.
An 18 marker setup was used to capture the motion capture
data for the able-bodied subjects. The marker setup for the lower
limb is shown in Figure 2. The asymmetric physical changes are
combinations of leg length changes and the addition of mass at

the ankle. There were two levels of leg length alteration: a small
height change of L1 = 27 mm and large increase of L2 = 52 mm.
The small and large mass added at the distal end weighed
M1 = 2.3 kg andM2 = 4.6 kg. The leg length was chosen to reflect
a larger than 2 cm change in leg length which is detrimental
according to literature. We used a linear relationship x and 2x
to select the larger leg length. Similarly the mass was chosen
based on a previous PDW study that used a linear selection
method (Handz̆ić and Reed, 2013). In addition to these changes,
the subject’s normal walking pattern was recorded before and
after all the perturbations. The leg length and mass changes were
added to the non-dominant leg of the subject to compound the
asymmetric effect (Muratagic et al., 2017).

Following this trial the subject was fitted with a variable
stiffness and damping knee orthotic device, which is also known
as the stroke simulator (SS) (Lahiff et al., 2016). The SS is used
to simulate the damping and resistance at the knee joint felt
by stroke patients. The knee joint of the stroke patient has a
damping effect due to the imbalance in control of the anterior
and posterior femoral muscles. Stroke victims also experience
stiffness/resistance to flexion of the knee joint due to the over
excitation of the rectus femoris and lack of control of the
posterior femoral muscles that render the knee in a constant
state of extension. The device is a modified knee orthosis with
a rotary damper of ζ = 8,898 g-cm-s/◦ for the damping effect
and a torsional spring of K = 0.457 kg/mm for the stiffness effect.
The device was fit on the subject’s dominant leg. This is because
the dominant limb is less coordinated and hence, exhibits the
maximum asymmetric change (Sadeghi et al., 2000). The subject
then walked with the SS for 10 min to adapt to the device’s
dynamics. Then the device was removed and the subject walks for
another 2 min to measure any after effects due to the asymmetric
change applied at the subject’s knee.

3.4. Data Analysis
The motion capture and force plate data gathered from the
CAREN system is used to perform the gait analysis. The gait
analysis was performed using a MATLAB script that evaluates
the spatiotemporal, kinematic, and kinetic parameters from the
raw coordinate and force data for each perturbation. Once the
parameters are analyzed, their differences are evaluated for each
step using the symmetric index formula (Herzog et al., 1989).
This asymmetry data is then used to obtain the Combined Gait
Asymmetry Metric (CGAM) (Ramakrishnan et al., 2016), which
is a single number representing an Index/score for the level
of asymmetry. The study further compares the CGAM to the
machine learning grouping metric with the help of LibSVM
library (Chang and Lin, 2011). Figure 4 shows the complete setup
for the development of the metrics.

The CGAM is a simple metric that uses the Mahalanobis
distance from ideal symmetry to the data points obtained from
gait analysis. Mahalanobis distances are calculated in multi
dimensional datasets such as the calculations performed on
the 11 gait parameters, shown in Figure 4. The formula for
calculating the CGAM distance is shown in Equation (1). The
equation presented in this article is modified from the previous
version of CGAM (Ramakrishnan et al., 2016). This formulation
provides more of a weighted means approach to decrease the
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FIGURE 1 | The computer assisted rehabilitation environment (CAREN) was used to collect the datasets for this research. The CAREN is equipped with a 10 Vicon

Bonita infrared motion capture system, Bertec continuous force plates, split belt treadmill, 6 degree of freedom motion platform, and a fully enclosed safety cage. The

subjects are secured to the safety cage of the CAREN for their safety.

FIGURE 2 | Marker setup. (A) 18 marker lower limb human body model (LLHBM) and (B) 30 marker full body model (FBM). R, right; L, left; ASIS, anterior superior iliac

spine; PSIS, posterior superior iliac spine; FEM, femur; TIB, tibia; STRN, sternum; SACR, sacral wand marker; SHO, shoulder.
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FIGURE 3 | Various perturbations. (A) Able-bodied subject, (B) vacuum assisted suspension brimless socket, (C) ischial ramus containment, (D) no leg length and no

weight (LL-N-W-B), (E) no leg length and small weight, (F) small leg length and no weight, (G) big leg length and small weight, (H) small leg length and big weight, (I)

big leg length and big weight, (J) small leg length and small weight, (K) big leg length and small weight, and (L) stroke simulator (Lahiff et al., 2016) with rotational

damper and torsional spring.

variability of results for the same gait parameters. This is achieved
by dividing the original equation with the summation of the
inverse covariance matrix. This method eliminates an extra step
of dimensionality reduction that is carried out by algorithms
such as Principle Component Analysis (PCA). Although PCA
can help reduce the computational burden of multi dimensional
datasets, it does so at the expense of losing information. CGAM’s
procedure analyzes the datasets without any loss in information
and provides an overall perspective of the gait asymmetry based
on biomechanical parameters. Further, the multiplication of the
covariance matrix provides a weighted system that allows the
metric to pick up on important changes in asymmetry among all
the gait parameters.

CGAMDistance =

√

(Data) ∗ inυ(6) ∗ (Data)′
∑

(inυ(6))
(1)

• CGAM Distance = Mahalanobis Distance from Ideal
Symmetry

• Data = Matrix with n columns (11) and m rows (Number of
Steps)

• 6 = Covariance of the Data.

4. RESULTS

4.1. Calculating the CGAM Score
To further describe how the CGAM metric combines the gait
parameters into one measure, the 11 gait parameters are shown
in Figure 5 with their respective CGAM score for four of the gait
alterations. An important aspect for interpreting this metric is
the covariance of the asymmetry matrix, which serves to weight
the measures based on how much variability is present. From
Equation (1) it is clear that the covariance of the data plays a
major role in calculating the Mahalanobis distances from ideal
symmetry. The measures that have more variability get weighted
less and more consistent measures are weighted more heavily.
These weights generally account for the variations in magnitudes
across all the parameters. For example, pushoff and braking
forces tend to show much higher magnitude asymmetry than
other measures, but they also showmore variability; scaling them
based on their variability makes the influence comparable to the
other measures.

Even though the Stroke Simulator in Figure 5B looks to have
low asymmetry onmanymeasures, the variability is high on those
measures. The high variability means that some steps have large
asymmetry. Specifically the stroke simulator data shows a large
increase in the step length and hip moment asymmetry that are
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FIGURE 4 | Procedure to acquire gait metrics.

FIGURE 5 | Comparing variation of mean, standard deviation, and CGAM metric among perturbations. (A) Normal walking without any alterations, (B) walking with

SS or the variable stiffness and damping knee orthosis, (C) walking with big leg length and no weight addition at the ankles, and (D) walking with big leg length and

weight. SL, step length; ST, step time; GRF, ground reaction forces; PF, push off forces; BF, braking forces; KA, knee angle; AA, ankle angle; HA, hip angle; AM, ankle

moment; KM, knee moment, and HM, hip moment.

part of the resultant increase in the CGAM score magnitude.
In contrast a large hip moment asymmetry seen in Figure 5C,
with large leg length increase on the left leg, does not increase
the CGAM score as much since the other parameters are in the
nominal range. It is important to keep in mind that the CGAM
scores are measured from perfect symmetry, so even normal
walking with no alteration has some asymmetry, as shown in
Figure 5A. Figure 5D shows the combined overall effect of a
large mass at the distal end and a large increase in leg length,
which results in a larger score compared to large leg length only.

Thus, the overall CGAM score is higher than the normal walking
shown in Figure 5A, even though some of the normal walking
averages are fairly asymmetric.

4.2. Comparison of Alterations
Figure 6A illustrates the CGAM scores with the alterations
applied to able-bodied subjects, and Figure 6B illustrates the
comparison of the scores between able-bodied individuals and
the transfemoral prosthetic user walking with two different
sockets. It can be seen in Figure 6A that the addition of mass
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at the distal end makes gait overall more asymmetric than an
increase in leg length. The effect of combining mass and LLD
showed that a large mass at the distal end and a small LLD had
the overall highest asymmetry. This demonstrates that the largest
physical asymmetry, which in this case was the large mass at
the distal end combined with a large LLD, may not necessarily
lead to the largest deviation in overall gait asymmetry. On closer
inspection of the individual gait parameters, it was revealed that
there may be a cancellation effect with the large change in leg
length and hence the overall CGAM value was lower. When
the subjects walked with just the larger leg length, the step
lengths were more asymmetric than the step times; however,
the step times were more asymmetric than step lengths when
only wearing a large mass. This kind of behavior is illustrated
with the different perturbations and hence, these opposite effects
tend to cancel each other out which results in a lower CGAM
value. A previous study conducted by Muratagic et al. (2017)
found that there were no significant effects observed due to the
combination of LLD and distal. However, the study also observed
some cancellation effects due to the combination of LLD and
mass which showed that there are potential combinations that
could result in a balanced gait pattern.

The changes related to prosthetics also had significant effects,
as shown in Figure 6B. Wearing the SS affected the gait of all
able-bodied subjects and caused a similar level of asymmetry
in this metric compared to an amputee wearing a prosthetic.
However, speed affected the gait asymmetry, and there was
one speed on each of the prostheses that the subject was not
comfortable with. Another observation from Figure 6B is that
the IRC socket is more consistent in overall gait asymmetry but
the subject felt less pain using the VAS socket, and gait with the
VAS has a better overall gait at a high velocity (Kahle et al., 2016).

4.3. Statistical Analysis
A two-way repeated measures ANOVA analysis was performed
with mass and leg length as independent variables and CGAM as
the dependent variable. Mauchly’s Test indicates that sphericity
was not violated. The results of the ANOVA show that distal
mass, F(2, 18)= 19.15, p< 0.005, and leg length, F(2, 18) = 5.72,
p < 0.05, show statistically significance results in regards to
CGAM. There was not a statistically significant interaction
between the amount of mass added and amount of added
leg length, F(4, 36) = 0.20, p = 0.49. This is similar to the
effects observed in our lab’s previous study (Muratagic et al.,
2017). Further, the post-hoc comparisons for mass revealed
significant difference between no mass and both small and large
mass conditions. There was a statistically significant difference
between no length and the large leg length condition. This
analysis methodmatches our previous study, and the conclusions
are similar. However, this analysis excludes the stroke simulator
and different speeds, so an additional one-way ANOVA was
performed.

A one-way repeated measures ANOVA analysis was
performed with all 14 of the gait patterns shown in Figure 6A

used as independent variables and CGAM as the dependent
variable. This analysis was performed to examine the individual
differences of all the gait patterns, unlike the two-way ANOVA

FIGURE 6 | CGAM scores for all perturbations. (A) Able-bodied subjects with

multiple physical asymmetries. (B) Comparison of Able-body subjects to

prosthetic user at three different speeds (0.5, 0.9, and 1.3 m/s).

describe above that focused only on the added mass and height.
Mauchly’s Test indicates that sphericity was not violated. The
results of the ANOVA show that there were a statistically
significant differences in gait patterns, F(13, 117) = 10.21,
p< 0.0001. The post-hoc test results are shown in Figure 6A. The
normal gait pattern is statistically significant to the perturbation
with large leg length and small mass and the gait pattern with the
stroke simulator. Similarly, gait pattern with the subject walking
at 1.3 m/s showed statistical significant difference between
perturbation with large mass and gait with stroke simulator.
This was to be expected since 1.3 m/s is close to the average self
selected speed of all the subjects.

4.4. Comparison to Machine Learning
Machine learning has been used in data driven industries to find
patterns in large amounts of disparate datasets. The two datasets
that were collected during this study represent gait with multiple
asymmetric changes and hence, can be used to find patterns. For
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this study the LibSVM library (Chang and Lin, 2011) was used
because it is easy to implement and it is widely used for research
data. The machine is trained using labels and a training dataset.
The labels are long vectors with a single number and the training
datasets are ground truths. In the case of this study the labels were
0 and 1. Label 0 was used for the perfect symmetry which is a zero
matrix with 11 columns and multiple rows. Label 1 was used for
training asymmetry data. Figure 7 shows the results of grouping
predictions from 2 different asymmetry training datasets.

The pattern of the LibSVM grouping Index seen in Figure 7A

is very similar to the pattern of the CGAMMahalanobis distance
in Figure 6A. Although the specific values cannot be compared
directly because the modes by which they arrive at the results
are inherently different, the trends highlight the differences
between these two methods. The CGAM metric uses a simple
Mahalanobis distance calculated from ideal symmetry while the
more complex machine learning metric groups the data based
on training datasets. LibSVM is not as reliable at this stage for
being considered as a gait asymmetry metric because, based on
the training datasets, the results vary substantially. This can be
seen by comparing Figure 7A,B where the training datasets were
different and the grouping predictions are completely different.
This can be attributed to the different asymmetries present in the
SS data and the weight/LL datasets. CGAM does not get affected
by these differences and offers a more objective metric that can be
used to classify the asymmetric changes. Another problem with
Machine Learning as a metric is the requirement of large datasets.

5. DISCUSSION

This study demonstrates a simple metric that can help classify
physical changes in human gait using the asymmetries of gait
parameters. The results discussed above show that the metric is
able to successfully categorize the extent of asymmetric changes
caused by different perturbations. For example the CGAM scores
for walking with the SS, which is designed to cause asymmetric
gait, has a significantly larger value compared to the value that
was gathered for gait immediately after the device was taken
off. The after-effects of the SS are also more asymmetric than a
normal gait pattern, which shows that the individuals adapted
to the SS. Classification of gait based on overall symmetry will
help clinicians keep track of a subject’s progress, such as pre-
and post- physical therapy regiments. The SS can be examined
as an impeding exoskeleton. Hence, the gait wearing the SS and
after removing the SS are both asymmetric overall. Conversely,
in robot-assisted locomotion therapy, the outcomes are expected
to be more symmetric (Lo et al., 2010). CGAM could provide
researchers the tools to measure the overall change in gait
asymmetry and modify their rehabilitation techniques to induce
better gait patterns. This approach is different from prior research
practices that limited their study to either spatio-temporal,
kinematic, or kinetic data.

Another approach is analyzing an individual’s gait parameters
separately. This method could reveal insights on specific
comparisons, but the complexity increases with the number
of gait parameters. It is difficult to determine if the gait has

improved when separately examining 11 parameters. The CGAM
could make this evaluation easier since it can be used to
represent a range of gait parameters, and it is not just limited
to the 11 parameters that were used in this study. The subsets
of the gait parameters can be made to fit the requirements
of the clinicians such as reporting on improvements in only
spatiotemporal parameters or only in kinematics. For example,
in a prior study with CGAM, only 5 gait parameters were
used to analyze the data (Ramakrishnan et al., 2016). The
parameters were step length, step time, vertical forces, push off
forces, and braking forces. Using these 5 asymmetry parameters,
the CGAM was able to classify the different perturbations of
leg length and addition of masses on separate legs. Although
this metric used 11 gait parameters, the two-way ANOVA
showed similar results to the analysis performed using five
gait parameters in the study by Muratagic et al. (2017). This
leads to one of the avenues for future research which involves
determining the minimum gait parameters required to represent
a gait pattern. CGAM is designed to be used for any number
of gait parameter asymmetries representing multiple forms of
data. However, many research studies typically do not come
equipped with a CAREN or similar system to gather large
amounts of data. One of the advantages of CGAM is that it
can be potentially used on limited availability of quantitative
asymmetric data. We are exploring the boundaries of this metric
to be able to benchmark it for standard protocols for gait
analysis.

Consolidated metrics such as CGAM and Machine Learning
offer a unique and simplified perspective into categorizing
gait data between multiple asymmetric datasets. CGAM has
the potential of serving as a benchmark in representing
overall gait asymmetry using multiple different parameters. The
multidimensionality that CGAM offers makes it versatile and
as shown in this article we can assess multiple gait patterns
with different causations. These metrics have to be field tested
in clinical trials in order to be formally proposed for clinical
use. It is important to remember that these metrics could direct
researchers to help patients achieve a well rounded gait. A
well rounded gait can be characterized as a sustainable gait
that an individual adopts that has the least overall asymmetry,
not just a decrease in one parameter. Some parameters would
remain asymmetric so that other parameters could become
closer to symmetry. In case of a person who is physically
asymmetric, this would mean adopting a gait and posture
that will have a balance between all the gait parameters.
This adaptation of a well rounded gait will help a physically
impaired person to sustain a long-term gait that may not
necessarily be as symmetric as an able-bodied gait, but it is
subjectively beneficial to their specific physical asymmetry. A
well rounded gait will alleviate long-term problems caused
by asymmetric forces and moments acting on the person’s
body.

In this study the 11 parameters were chosen because they
represent important gait parameter information and have clear
symmetry values between each limb. With both metrics it is
clearly seen that the addition of mass at the distal end has a larger
effect on the overall symmetry than leg length discrepancies.
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FIGURE 7 | Machine learning (LibSVM) grouping metric using two different datasets for training. (A) Uses the asymmetry data for walking with stroke simulator.

(B) Uses the LL-S-W-B data which was found to have the largest CGAM score notice the differences in grouping.

The combined effect of leg lengths and mass addition did
not reveal a clear pattern but the results were as expected in
most cases. For example, the combination of big leg length
and mass had a slightly larger effect than small mass and leg
length. However, the combination of a small leg length and
big mass had a lot more deviation than big leg length and big
mass. This is caused by the cancellation effects between gait
parameters, which in turn resulted in a larger or smaller CGAM
value.

There are some limitations associated with this method
and study. There are many other gait patterns that were not
discussed that arise from other gait impairments that should
also be evaluated. Future studies can easily incorporate this
metric in their analysis to compare the individual metrics to an
overall picture of the gait. This will help in the generalization
of this concept and also help to make the comparisons across
different gait patterns more meaningful. This metric could also
be optimized to find the most salient gait parameters to include;
some of the ones used in this study may not be ideal and there
may be others that are more beneficial to include.

The prosthetic gait at the three different speeds showed that
the overall symmetry improves with increases in speed. It has
been shown in literature that amputees achieve better spatio-
temporal and kinematic symmetry at higher speeds, but at
the expense of kinetic symmetry which can cause long-term
degeneration effects (Nolan et al., 2003). We require a bigger
patient population in order to gather all variations of prosthetic
gait and leave that to future studies. The analysis provided in
this study will improve further and can be more robust if a
larger dataset frommultiple patient population is used. The study
presented in this article provides some proof into the efficacy of
CGAM but it is limited by the small population size.

The CAREN is a versatile device that was used to collect
all the data for this study and has been used in other similar
studies (Ramakrishnan, 2014; Muratagic, 2015). To further
understand the effects and dynamics of physical asymmetries,
the split belt treadmill can be used to exaggerate asymmetries.
Split belt treadmills are used to rehabilitate gait affected by
hemiplegia by having the treads move at different velocities.

This exaggeration of hemiplegic gait temporarily restores the
person’s gait closer to symmetry. However, successfully returning
a person’s gait to spatio-temporal symmetry does not necessarily
guarantee an overall effective gait with a healthy ratio of
symmetry between all gait parameters. To further explore how
physical asymmetries combine, the split belt treadmill could be
used in conjunction with an added mass and/or LLD.

6. CONCLUSION

Analyzing multiple physical asymmetries in one platform
requires a special form of metric. This is because every
perturbation of physical change that impairs an individual’s
gait has to be accounted for and kept track of following
clinical procedures. The consolidated metrics such as CGAM
and Machine learning can be quantitative data analysis tools
that can help researchers keep track of a person’s overall
gait asymmetry. These metrics can be obtained using all gait
asymmetry parameters such as spatio-temporal, kinematic, and
kinetic or by using subsets and combinations of any or all of these
parameters. This versatile platform allows researchers to have
many options for generating metrics to represent the progress
or regression of an individual over a period of training and
time.
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