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Abstract

The ubiquitous nature of symmetry lends itself to be taken for granted, however the breath

of research on symmetry encompasses several disciplines. In engineering, studies centered on

symmetry often address issues in dynamic systems theory, robotics, and gait rehabilitation. This

thesis presents findings on two specific topics dealing with passively induced symmetry; dissimilar

rotating systems and human gait. Past studies on passive symmetry in dynamic systems often

incorporate physical coupling or a controller. This thesis presents a technique to passively induce

symmetry between two dissimilar systems that are not physically connected. This work also

presents a human gait study consisting of several elements that merge to provide a unique look

at how walking symmetry and altered physical parameters (leg length and added weight) of the

lower limbs are related.

One aspect of this thesis shows the successful development of a general method to induce

synchronization between any two dissimilar, uncoupled, rotating systems given the same degrees of

freedom, initial angular dynamics, and applied torque. This method is validated with a simulation

and subsequent comparison with two physical experiments. The results are in agreement, with

slight variations due to the friction and damping of the physical systems. This is further expanded

to include the induced symmetry of two systems that experience an external collision. Due to the

highly non-linear nature of such systems, an analytical solution was not found; instead a numerical

solution is presented that resulted in partial symmetry between systems.

The gait study demonstrated that weighted walking and altered leg length have both inde-

pendent and combined spatio-temporal effects on lower limb symmetry. While altered leg length

alone resulted in higher gait asymmetry, the combination of the two physical changes increases this

asymmetry to affect the same limb. This study also showed that cognitive and physically distracted

vi



walking does not have an added effect to the gait symmetry with passive physical changes. In

addition, this study was able to demonstrate that the arm swinging that occurs during natural

walking does not significantly alter spatial or temporal gait parameters.
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Chapter 1: Introduction

In its clearest and simplest form, symmetry is defined as an agreement of pattern and

proportion. Our affinity for symmetry is so deeply entrenched in our lives that it may impede

our ability to discern how universal and important it is. For instance, studies have shown that

attractiveness is highly influenced by how symmetric certain facial attributes are [52]. In engi-

neering, symmetry is usually synonymous with stability and efficiency. Several disciplines of

mechanical engineering such as dynamics, robotics, and rehabilitation encourage symmetric or

synchronized systems. Symmetry is thought to enable efficient task performance, such as in gait.

A symmetric walk allows us to stably move from place to place without feeling overburdened

and uncomfortable. However, imbalances of gait do often exist in human gait, and one common

example is a person who has suffered from a stroke. They lack the equilibrium of a normal gait

because of a condition called hemiparesis, where one side of their body becomes paralyzed [33,

43]. There are several training methods to improve this condition, but our aim is to improve the

symmetry of such impaired gaits with passive means. This research aims to explore the induced

symmetry in dynamic systems and human walking and how this symmetry can be introduced back

into unsynchronized or unbalanced dynamic systems and humans.

This thesis begins with a background chapter that will provide a review of the research

surrounding the synchronization and symmetry of dynamic systems and passive walking models.

The background will present historical examples on symmetry and then expand to demonstrate the

variety of research that is performed in the realm of symmetry today. Throughout the background

I will be highlighting just how powerful the topic of symmetry and synchronous systems are in

engineering. Finally, I will survey some of the walking studies that have inspired this research and

explain how this thesis can provide an additional insight to the field.
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Chapter 3 then introduces a general synchronization method that was developed to accu-

rately predict and match the motion between two dissimilar rotating systems. The synchronization

of any two rotating systems can be as simple as physically placing a joining spring or damper

between the systems or may require sophisticatedly controlled actuators that augment natural

system dynamics. However, this research focuses on dissimilar rotating systems without any

physical coupling. The passive kinematic matching technique allows two independent systems to

generate the same motion without any physical system coupling or actuator control law. To validate

this method, the passive synchronization technique is applied to two open-ended rotating kinematic

chains: single- and double- link pendulums with different masses at different mass locations along

the links. Even though double-link pendulums are highly nonlinear systems that are sensitive to

changes in initial conditions and system parameters, this matching technique enables the same

generated motion on dissimilar double-link pendulums.

The practical application of such a passive matching technique is the flexibility in mechan-

ical design as one is able to describe the same kinematics with a variety of parameters (i.e., masses

and mass distributions). In essence, one is able to decouple the mass and the first moment and

second moment of inertia so systems with dissimilar masses and mass distributions will have the

same motion. For example, the motion of a double-link pendulum modeled as two links with one

mass per link can only be described by one unique combination of masses and mass locations

along the links. However, having two masses per link allows the kinematics to be described with

an infinite number of distinct systems with distinct masses and mass distribution that all have the

same resulting motion. In fact, the minimum number of masses per rotating link to describe any

arbitrary rotational kinematics is two masses, yet many models only include one mass. Using only

one mass per link inherently couples the moments of inertia so that any change in the location of

the mass necessarily affects both the first and second moments of inertia.

The modeling method to derive this synchronization technique can be used to simplify

complicated rotational kinematics problems by simplifying the dynamics model of the system by

assuming a finite distribution of point masses along swinging members. For example, the rotation
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of a fan blade can be represented with two masses distributed as specified using this method instead

of finding detailed masses, mass distributions, or moments of inertias of the continuous system.

This type of modeling can also be applied to human or robotic limbs and in prosthesis design.

The research is then expanded further to form synchronization examples of dynamic sys-

tems that experience external collisions. The inclusion of the collision equations to these systems

introduce complex dynamics, thus increasing difficulty in synchronization. The same double

pendulum systems are used, but due to the complexity, a numerical solution is presented. When

inverted, these types of systems can be viewed as simple Passive Dynamic Walkers (PDW), which

are often used in gait rehabilitation research to model the physical motion of human walking.

PDWs allow engineers to study the natural gait in a purely physical sense without the

interaction or response of the conscious motor control. However, this research aims to tie together

the passive synchronization methods previously discussed and the symmetry or asymmetry present

in human gait that inherently involves this conscious factor. One major issue with comparing

applied passive changes in simulations and human walking is that these simulations cannot account

for what the conscious effects will do to the gait pattern. To investigate this problem and to identify

which type of passive changes (leg length or leg weight) are most effective to human subjects, a

gait symmetry experiment was developed.

Chapter 4 presents a multi-component walking study on the induced symmetry of human

walking. One major element of this study is the testing of different combinations of passive

changes. These passive changes consist of adding a weight to the ankle of the weaker foot and

changing the leg length of the plant, or strong leg. The first investigation of this study allowed us

to see how such passive changes affect the symmetry of gait, and what combination of either leg

length or weight change produces a more symmetric gait in physically asymmetric configurations.

Certain asymmetric configurations that are able to exhibit a symmetric gait, have huge implications

for improving symmetry and efficiency of people that have an altered gait.

Another element to this study is the testing of how these passive physical differences affect

a human walk when the subjects perform a distracting physical and cognitive task. Ruffieux et
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al. [44] conducted a large scale literature review of dual task performance studies and concluded

that additional research is required to study what affects it has on performance in young adults.

The dual task distracted walking in this thesis attempts to minimize the conscious effects of each

participant, thus allowing the body to walk naturally, or to exhibit a truly passive gait. This research

can be applied to study the effects that distractions have on gait symmetry. For instance, cell phone

use while walking might result in an unsynchronized and inefficient gait. This study can also show

how asymmetric arm swinging motion, such as when performing a carrying task, influences gait

parameters.
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Chapter 2: Background

Evidence shows that symmetry has been a prevalent aspect of life dating back to ancient

times when it was used in artistic expression (shown in Figure 2.1) and communication [26]. Since

then, symmetry has been an intriguing concept that has represented the order and beauty often

present in nature. The idea of symmetry was first introduced by the Greeks to describe certain

charecteristics of well proportioned art and artifacts that were present all around them [26]. Today,

research on symmetry has expanded exponentially, and it is studied throughout many disciplines

including art [1], materials engineering [51], physics [47], and even psychology [34].

Symmetry in engineering is often synonymous with balanced and efficient systems. Mars-

den et al. [36] stated that "Symmetry has always played an important role in mechanics, from

Figure 2.1: An engraving on the Raimondi Stele from the ancient Chavin culture. This artifact
shows the vast symmetry present in early art-forms [Public Domain] [53].
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fundamental formulations of basic principles to concrete applications". To better predict the

behavior of their systems, mechanical engineers often design symmetric and balanced machines

and components. Engineers also are interested in studying how such symmetry can be induced

in dynamic systems, particularly dissimilar ones. There has been extensive research on how

symmetry, or synchronization, can be established between two asymmetric systems, with the

earliest beginning in the 17th century.

2.1 Physically Induced Synchronization

In 1657 Mathematician Christiaan Huygens invented the first pendulum clock in search of

improvements to nautical navigation [4]. These pendulum clocks were an impressive and advanced

mechanism during this time period. One distinct characteristic of these clocks is that when hung

on the same wall they tend to synchronize over time. Huygens concluded this phenomenon was

due to the small transfer of movement between clocks through the supporting structure. This clock

phenomenon can be regarded as the first observation of a coupled synchronized oscillator.

As part of the rise of faster computing power came the ability to actively synchronize

coupled mechanical systems with linear, nonlinear, passivity-based, or active control laws. There

are hundreds of publications which demonstrate such control laws, some of these publications are

on controlled motion synchronization for gyroscopes [40], inverted pendulum systems [38], and

chaotic systems [30].

Passive kinematic synchronization has had very limited exposure despite numerous arti-

cles addressing coupled synchronization. This includes Huygens’ clock phenomenon and recent

studies such as the synchronization of coupled oscillators [8], analysis of coupled multi-pendulum

systems [11], and matching of coupled double pendulums under the effects of external forces [29].

In fact, the only publications I discovered that dealt with passive synchronization were based in

sports science.
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2.2 Passive Uncoupled Synchronization

A golfer’s technique and the use of familiar equipment are essential features of optimal

performance. It is for this reason that all golf clubs in a set are matched (synchronized) statically

and dynamically, so when swung, each club behaves and feels the same to the golfer [3]. Statically

a golf club is matched by simply balancing it on a fulcrum, however dynamically matching the golf

club can be achieved by matching the moment of inertia for each club in the set about the swinging

axis [10]. Jorgensen presents a golf club dynamic synchronization technique by modeling the

swing arm and golf club and matching overall moments of inertia about the wrist axis [27]. In

these examples the kinematics of each uncoupled system (golf club) is synchronized given the

same input torque (the golfer’s swing). While this technique of golf club matching is practical in

its specific application, it lacks generalization and flexibility to apply to other rotating systems to

be synchronized.

Although limited literature addressing the field of passive synchronization of uncoupled

systems exists, a generalized passive synchronization method for physically uncoupled rotating

systems has practical implications. For example, the motion of human, insect or robotic arms

can be matched to improve the performance of certain tasks, such as lifting an object. A general

method could also impact several other fields including locomotion robotics, lower limb prosthetic

devices, lower limb rehabilitation and gait analysis.

In gait rehabilitation, for instance, an individual’s walk can largely be modeled as two

inverted pendulums (left and right step) rotating about the stance foot and progressing down a

decline with gravity as the only source of energy [32]. Being able to induce symmetry in such

systems has huge implications for improving gait rehabilitation models, simulations, and analysis.

Such models, illustrated in Figure 2.2, are called passive dynamic walkers (PDW) and have been

shown to predict certain aspects of human gait dynamics [13, 21, 22] and are commonly used to

simulate walking.
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Figure 2.2: A three link physical passive dynamic walker example with rounded feet.

2.3 Symmetry in Walking

2.3.1 Passive Dynamic Walkers

PDWs have long been utilized in the simple modeling of the dynamics of human gait.

They are a preferred method of gait modeling due to their repeatability and their ability to simulate

physical gait dynamics [12]. They are also popular because they can exhibit the asymmetries that

are present within a person’s gait without requiring to physically measure their walk. For instance,

if a person has interesting physical characteristics present in their lower limbs, a PDW can be used

to model their gait and investigate any asymmetries in their walk. In addition, the model can be

used to evaluate the usefulness or legitimacy of different rehabilitation methods that can be applied.
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(a) (b)

Figure 2.3: McGeer’s developments in passive dynamics. (a) The rimless wheel concept showing
the transfer of energy that occurs in walking (b) The compass gait used to model simple human
gait

Several of these models have been developed, and they include both physical representations and

computer simulations.

The study and expansion of PDWs has steadily increased in recent years, but the most

notable developments have come from Tad McGeer. McGeer developed the rimless wheel concept,

shown in Figure 2.3a, that considered inelastic collisions of each spoke at the point of contact and

provided insight into how to develop simple walking models. With this concept he developed a

two link walker, called the compass gait model that was able to successfully represent the energy

transfer that occurs during walking as the heel of the foot collides with the ground [37]. However,

this model was too simple to be used to represent the complex human gait. Chen used this model

to develop a five mass PDW, illustrated in Figure2.4, that included hip, thigh, and shank masses

with a linkage system. The five mass model included knee collision equations which allowed for a

more accurate representation of the human gait [5]. These advancements gave way to several other

studies in passive walkers including some centered on symmetry.
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(a) (b)

Figure 2.4: The evolution of the compass gait. (a) The original compass model (b) improved design
with knee and heel strike collisions.

Honeycutt et al. [25] used a brute force search through a numerical PDW model to show that

asymmetric limbs can have symmetric kinematics. In addition, they were able prove that lowering

a prosthetic knee joint while lowering the prosthetic mass can result in a spatially symmetric

gait. Gregg [16, 17] examined symmetry from the other point of view by finding symmetric

PDW parameters that yielded asymmetric kinematics. A leg synchronization technique can be

helpful to design and implement devices and methods for PDWs, general walking robots (shown

in Figure 2.5), and individuals. Such methods might include evening out gait asymmetries [14],

or intentionally exaggerating gait asymmetries for rehabilitation [19, 42]. One area where such

models would be useful would be in post stroke gait rehabilitation.

2.3.2 Asymmetry in Humans

Stroke is a condition most commonly caused by a suspension of the blood supply to the

brain, depriving it of oxygen and other vital nutrients. When a person suffers a stroke they often

develop physical asymmetries (shown in Figure 2.6), including asymmetric gait, arm swinging,

10



and facial features [48]. They experience diminished strength in the affected limbs causing the

hemipartic gait to be inefficient and difficult to stabilize [39]. There are several rehabilitation

methods that have been developed recently to induce symmetry back into a patient post-stroke,

the most common being split belt treadmill training. This type of training increases a particular

asymmetry, such as step length, on post stroke patients by applying different speeds to the tread

belts. The body of the patient then adjusts to accommodate this exaggerated asymmetry, and

ideally after several minutes, the body will adapt to this new change [49]. When the belt speeds are

returned to normal, their gait will exhibit a more symmetric pattern depending on what parameters

were affected. Although this method has been successful, one major issue is the need for this

Figure 2.5: An example of a bipedal robot. These types of walking robots can benefit from further
PDW research and advancements [Public Domain] [23].
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equipment. A patient must visit the clinic for every training session, which inherently becomes

time consuming and a financial burden.

This thesis aims to investigate how changing physical parameters at certain locations can

alter the interaction of gait parameters, specifically the step length, step time, and three ground

reaction forces. These physical changes, weighted walking and single leg length increase, are

applied in several different combinations and all are analyzed. Previous research on weighted

walking and unbalanced leg length have been partially addressed, but the simultaneous effect that

they have on gait symmetry has not.

Brain

SpinalVCord

PeripheralVNerves

Left Side Stroke Right Side Stroke

Effects:
V
-VParalysisVtoVtheVrightV
sideVofVtheVbodyVVV
-VSpeech/languageV
problemsVVV
-VSlow,VcautiousV
behavioralVstyleVVV
-VMemoryVloss

Effects:
V
-VParalysisVtoVtheVleftV
sideVofVtheVbodyVVV
-VVisionVproblemsVVVV
-VMemoryVloss

Figure 2.6: An overview of the effects of both left and right sided strokes.
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Weighted walking is commonly studied in the fields of mobility rehabilitation [7], general

strength training [15], and assessing aerobic ability [31]. While such topics have been extensively

researched in the realm of rehabilitation, only two research articles were found that addressed how

weighted walking alters gait. Skinner et al. [46] analyzed gait and oxygen consumption of people

wearing symmetric and asymmetric weights. They were able to show that asymmetrically applied

weights changed the stance phase of the weighted limb, while symmetrically applied weights

cause little to no change. Another study looked at what affects weighted garments had on balance

and gait in stroke patients [41]. The results show no significant change to either balance or gait

symmetry with weighted walking. Although these studies give some insight on the changing of

gait parameters in weighted walking, they lack the addition of leg length change and how the two

interact to modify gait.

Asymmetry in lower limb lengths is commonly referred to as leg length discrepancy (LLD),

and it affects up to 70 percent of the population [18]. Although the majority of people affected by

it only possess a small LLD, there are portions of the population with large and burdensome LLD.

Such large differences in limb length cause a multitude of physical problems, most commonly

gait asymmetry. Due to it prevalence, the relationship between gait symmetry and LLD has been

extensively studied. Several studies have found that as the LLD in able-bodied subjects increased

so does the gait asymmetry [28, 45]. Despite such studies showing the correlation between LLD

and gait symmetry, no research has been conducted on the induced gait symmetry that results from

different combinations of applied LLD and single leg weighted walking.

Aside from studying how these physical changes work together in altering gait symmetry,

this work also investigates the effect that dual task walking has on these changing physical param-

eters. Subconscious walking of human gait can be adequately modeled by the PDWs, mentioned

earlier, but one major flaw of these models is the lack of the consideration for the consequences

of human behavior that occurs during walking. The act of walking is driven by muscles that

are controlled by the nervous system, so not considering these factors can result in inaccurate

models. Attempting to simulate the reaction of the nervous system during walking would be a very
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complex process, but limiting the conscious side effects during a walking study would not. These

types of studies do exist, however they are primarily considering the after effects and adaptation of

performing dual task or distracted walking in post stroke subjects.

Malone et al. [35] tested the differences in adaptation in conscious and distracted correction

of walking. The study found that subjects that were distracted during the experiment exhibited

longer aftereffects, however these only affected spatial parameters of gait. Although the study

observes the conscious and dual task effect during correction of walking, it does not test how

induced physical asymmetry alters the symmetry in gait between the two types. Other dual task

gait studies have looked at the increase in falling risk [24], the effectiveness of dual task based

exercise in stroke patients [50], and others [9].

As a consequence of the dual task walking study presented in this thesis, the influence of

asymmetric arm swinging on gait is also investigated. On several occasions the arm swinging that

naturally occurs during walking is obstructed, as compared in Figure 2.7. For instance, walking

Figure 2.7: Differences in arm swinging modes. The left figure shows non-arm swinging gait and
right shows the natural or unaltered arm swinging gait.
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during phone use or carrying groceries causes the arms to become fixed in one position rather than

swinging freely. Again, these effects have been studied independently with articles comparing arm

swinging and the cost to gait mechanics [6], and the stability in gait [2]. However, these articles

did not consider how arm swing symmetry effects a gait symmetry with added physical changes to

the lower limbs.

The existing body of literature is extensive and provides a rich understanding of many

concepts related to physically altered (weight/leg length) gait and dual task walking. However,

there is a lack of research exploring how dual task walking alters the symmetry in physically

asymmetric gait, and what effects the relationship of altered physical parameters have on the spatio-

temporal aspects of gait. The research gives insight on how a passive, at home, gait rehabilitation

training technique can be investigated and developed. The following chapters of this thesis present

methods and results of the induced symmetry within rotating systems and human gait, and how

they can be applied in the fields of dynamic systems, robotics, and gait rehabilitation.
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Chapter 3: Symmetry Matching

This chapter encompasses the dynamic system symmetry of the research. First, a general

method of induced symmetry is presented and verified. It is then followed by an extension of

this method to include collision events, specifically a compass gait PDW. The work in this chapter

can be applied to rehabilitation engineering, and is used as the basis for the proceeding chapter’s

walking experiment.

3.1 Passive Synchronization of Rotating Systems

This section outlines the equations used to derive the kinematics of a two-dimensional

general rotating system essential for our passive synchronization method. Subsequently we will

use this generalized model to draw out a method to synchronize two or more dissimilar rotating

systems. The only requirements for this passive kinematic synchronization of dissimilar systems

are: identical degrees of freedom, initial conditions, and torques applied to the systems. These

same requirements are also needed to cause two identical systems to have the same motion.

Portions of this section were published in the journal of Nonlinear Dynamics and Systems

Theory [20]. For permission, see appendix A.

3.1.1 General Rotating System Model Description

We begin by deriving the equation of motion for a general rotating system with ň degrees

of freedom and m̌ masses per degree of freedom. Variable notation m symbolizes each individual

mass whereas m̌ symbolizes the total number of masses per rotating member (or link). This

generalized model is shown in Figure 3.2a, and can be described using Lagrangian mechanics

where the Lagrangian is defined as the difference of kinetic and potential energy. Note that this
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following formulation of the generalized equation of motion is not novel, however it is used in the

subsequently described kinematic matching technique.

L(θ , θ̇ , t) = K(θ , θ̇ , t)−U(θ , t) (3.1)

To find the equation of motion, the Euler-Lagrange expression is applied.

d
dt

(
∂L(θ , θ̇ , t)

∂ θ̇1,2...ň

)
=

∂L(θ , θ̇ , t)
∂θ1,2...ň

(3.2)

Equation (3.2) produces ň equations for ň degrees of freedom of the system. After differ-

entiating and collecting coefficients, the equations of motion of this general dynamic system is a

set of ň number of first order nonlinear ordinary differential equations shown in matrix coefficient

form in Equation (3.3).

[M]Θ̈ + [N]Θ̇2 + [G] = [T ] (3.3)

where the coefficient matrices [M], [N], and [G] are given in Equations (3.10), (3.14), and (3.15),

respectively. [M] is the inertia matrix coefficient, [N] is the velocity matrix coefficient, and [G] is

the position/gravity coefficient matrix. [T] can represent any applied or non-conservative torque

functions applied to the system such as actuator torque, joint friction torque, or air resistance

experienced by a swinging member.

[M]ň,ňsym =



M1,1 M1,2 cos(θ1 −θ2) · · · M1, j cos(θ1 −θ j)

M1,2 cos(θ1 −θ2) M2,2
...

... . . . Mi−1, j cos(θi−1 −θ j)

M1, j cos(θ1 −θ j) · · · Mi,i


(3.4)
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Here, each of the coefficients on the diagonal are given by

Mi,i =
m̌

∑
p=1

l2
i,pmi,p + l2

i

ň

∑
q=i+1

m̌

∑
p=1

mq,p (3.5)

and the remaining non-diagonal coefficients are given by

Mi, j = li

 m̌

∑
p=1

l j,pm j,p +

l j ∑
ň
q= j+1 ∑

m̌
p=1 mq,p j < ň

0 j ≥ ň

 . (3.6)

The subscripts i and j represent the matrix entry indexes for matrix row and matrix column,

respectively.

[N]ň,ň =



0 M1,2 sin(θ1 −θ2) · · · M1, j sin(θ1 −θ j)

−M1,2 sin(θ1 −θ2) 0
...

... . . . Mi−1, j sin(θi−1 −θ j)

−M1, j sin(θ1 −θ j) · · · 0


(3.7)

[G]ň =



∑
m̌
p=1 l1,pm1,psin(α1,p +θ1)+(l1 ∑

ň
q=2 ∑

m̌
p=1 mq,p)sin(θ1)

...

∑
m̌
p=1 li,pmi,p sin(αi,p +θi)+(li ∑

ň
q=i+1 ∑

m̌
p=1 mq,p)sin(θi)

...

∑
m̌
p=1 lň,pmň,psin(θň,p +θň)


g (3.8)

These are the coefficient matrices for the equations of motion of a general rotating system

model with ň degrees of freedom and m̌ masses per degree of freedom. The [M] matrix is a

symmetric matrix, while the [N] matrix is a negatively mirrored matrix with a zero diagonal. Note
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Figure 3.1: Different configurations illustrating the application of the general method. a)
Kinematic chain for an ň degree of freedom system with m̌ masses per link. b) Modified models
that can be created using the general synchronization method.

that the coefficients [Equations (3.5) and (3.6)] are all unique matrix components in the [N] matrix

that all appear in the [M] matrix. Also note that the last row of [G] (i = ň) is different since

there are no masses from links further down the kinematic chain sequence. Masses (m) and mass

distributions (l) are shown in Figure 3.2a.

Equation (3.3) can model any degree of rotating system or rotating system links. Degrees

of freedom (links), mass, and mass distribution within each link can be easily modified to create

models for such systems as shown in Figure 3.2b. These modified models can represent rotors,

pendulums, cams, or rotating kinematic systems and open kinematic chains.
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3.1.2 Passive Kinematic Synchronization using Matched Coefficients

Now that the general point-mass model for a rotational open-ended swinging system has

been defined, I am able to utilize the model to create synchronized motion between two dissimilar

systems.

Given the same torque input and initial conditions, two or more systems with the same

degrees of freedom will exactly match in dynamics if all four coefficient matrices, [M], [N],

[G], and [T ] in Equation (3.3) are matched between the systems. Since only the computed end

values of these coefficients determine the dynamic behavior of the rotating systems, the masses

and mass distribution do not have to match between them. This allows for two or more systems

with dissimilar mass and mass distribution parameters to kinematically behave identically, that is,

have identical dynamic coefficients [M], [N], [G], and [T ]. For instance, assuming identical torque

input and initial conditions, a swinging single link pendulum with two masses can be designed to

swing identically to another single link pendulum with two or more masses, where the masses are

are distributed differently along the pendulum link. This concept allows for the first and second

moments of inertia to be decoupled and greater design flexibility is obtained. Given that each

link has two or more masses distributed along the link (m̌ ≥ 2), there are infinite combinations of

kinetmatically matched systems, that is, there are an infinite number of ways the masses can be

distributed such that the four coefficient matrices in Equation (3.3) match another system.

When the coefficient matrices are generalized for systems with ň degrees of freedom with

m̌ masses per link (Equations 3.10, 3.14, and 3.15), a pattern of repeating matrix entries emerges.

Table 3.1: Number of KMCs for any ň degree of freedom system

DOF (ň) Number of KMCs
1 2
2 5
3 9
. .. .. .

ň KMCň−1 +(ň+1)
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Figure 3.2: Single link and double (2-link) pendulum representation model. (a), (b), and (d) were
used experimentally.

It is seen that for the coefficient matrices to match between two rotating systems and cause syn-

chronized dynamics, only unique parts of the coefficient matrices need to be matched between

systems. The naming of each unique term that appears in the coefficient matrices will now be

called a kinematically matched coefficient (KMC). The KMCs are represented in Equations (3.5),

(3.6), and (3.15). The total number of KMCs that have to be matched between kinematically

synchronized systems is given in Table 3.1. For example, to synchronize the dynamics of a pair of

one degree of freedom rotating system, two KMCs need to be matched, while for a pair of three

degree of freedom systems to be synchronized, nine KMCs need to be matched.

In the following sections I will present two examples of this matching technique for one

and two degree-of-freedom systems with experimental validation.

3.1.3 Example 1: Passive Single Link Pendulum

This section utilizes the method presented in Section 3.1 and experimentally demonstrate

its validity. I start with creating two matched variations of a simple passive ([T ] = 0) single mass

(m̌=1) single link (ň=1) pendulum that is shown in Figures 3.2a. The physically asymmetric

version of the single link pendulum has two masses per link (m̌=2) (Figure 3.2b).
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Although more masses could be utilized to match the motion of this single link pendulum,

two masses are sufficient to describe any number of masses and mass distributions. The parameters

of all three dissimilar single link pendulums are shown in Table 3.2. Since a single link pendulum

is one degree of freedom, only two KMCs had to be matched between systems (M1,1=33,600 g-cm2

and G1=1,260 g-cm).

3.1.3.1 Experiment Description

The three dissimilar single link pendulum systems were constructed from rigid foam board

that was light (1.125g per link) relative to the entire pendulum. Mass and mass distributions were

calculated using KMCs in Equation 3.10, 3.14, and 3.15. Lead weights were used as pendulum

masses and attached to the link at appropriate positions. The mass values listed in Table 3.2 were

rounded to whole grams for the experimental pendulums. To ensure precise link dimensions, each

pendulum was cut with a 60W laser cutter (Universal Systems VLS4.60).

The links were attached to a short and rigid 0.375in (0.9525cm) aluminum rod using a

precision steel ball bearing to reduce friction. To minimize variability due to friction (negative

torque), the exact same bearing was used for each system. Each pendulum system was dropped

from the same initial position with an adjustable spring loaded release mechanism. This complete

setup can be seen in Figure 3.3.

The pendulums were video recorded at 50 frames/second (50 Hertz) using a Cannon® T3i

digital camera with a Cannon® EF 50mm f/1.8 II lens. Link angular position was interpreted with

Matlab®, which was used to load video frames and identify each link’s distinct color while in

motion.

3.1.3.2 Results

Five videos of each pendulum were recorded (15 total). The recorded angular position was

averaged and filtered using a low pass 2nd order Butterworth filter at 6 Hz. This angular position

data is presented in Figure 3.4 and compared with ideal predicted model behavior. Modeled sys-

22



5

1

2

3

4

Release Apparatus

Pendulum

Laptop 
PC

Colored Marker
8ft (2.4m)

Video 
Camera

(Cannon, T3i, 
50 Frm/Sec)

Matlab

U
S
B

Figure 3.3: Release mechanism used for all pendulum measurements. (1) Release Rod (2) Spring
Release Component (3) Weights (4) Foam Pendulum Link (5) Ball Bearing

tems have the same masses and mass distribution as measured physical systems. As predicted, all

three ideal modeled systems have the same temporal kinematics and exactly overlap in Figure 3.4.

Spectral analysis shows the same frequency peak between all measured physical systems, while all

three modeled systems peaked 0.06 Hz below the measured system peaks.

While the recorded physical systems were affected by non-conservative forces, such as air

resistance and friction, all three dissimilar pendulums matched kinematically. Their slight differ-

ence in amplitude can be explained by the variable mass and mass distribution in the pendulums

that leads to variable weight and centripetal forces on the bearing, which in turn increases rotational

friction. Similarly, the effect of the friction torque is affected by the inertia of the system. Although

the kinematics are matched, the kinetics in these dissimilar systems does not match; the different
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Table 3.2: Single pendulum coefficient equations and experimental parameters

Coefficient Coefficient System 1 System 2 System 3

Index Value (m̌=1) (m̌=2) (m̌=2)
KMCs M1,1 33,600 g-cm2 m11l2

11 m11l2
11 +m12l2

12
G1 1,260 g-cm m11l11 m11l11 +m12l12

Masses (g) m11=47.3 m11=35.0 m11=49.0
m12=21.0 m12=31.8

Lengths (cm) l11=26.7 l11=15.0 l11=5.0
l12=35.0 l12=31.9

masses will generate different forces. Despite these small effects, all three physically dissimilar

pendulums had a frequency of 0.88±0.04 Hz.

When comparing the collected and model data, the effects of damping become distinct. As

a result, the amplitude and period decrease over time for the actual systems as shown in Figure 3.4.

As previously explained, the model derivation did not include a damping coefficient, thus its effects

on motion was not predicted. Despite this difference, the model and all three physically dissimilar

pendulums have very similar motion.

3.1.4 Example 2: Passive Double (Two-Link) Pendulum

The induced symmetry is further investigated by passively synchronizing two ([T ] = 0)

dissimilar double pendulum(ň=2) systems with two masses per link (m̌=2). This rotating model is

illustrated in Figure 3.2c and 3.2d and KMCs are shown in Table 3.3.

Traditionally the double pendulum is modeled in Figure 3.2c, however this model is im-

practical from a design perspective considering that the pivot point between the upper and lower

link is exactly where the mass is placed and the link is massless. Hence, for this comparison, I

added two masses per link.

24



3.1.4.1 Experiment Description

Two double pendulums were created using the same fabrication technique and material as

the single pendulum experiment in Section 3.1.3. An additional small ball bearing was placed at

the pivot point between the upper and lower link with a 0.25in (6.25mm) wooden pin. Both small

bearing and pin had a combined weight less than 2 grams.

The links were attached to the same aluminum rod, ball bearing, and were released with

the same release mechanism shown in Figure 3.3. Specific colors were placed on each link to track

their angular positions. Due to greater acceleration of links, the double pendulum nonlinear motion

was again recorded at 50 frames/second with the same camera.
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Figure 3.4: The motion of three kinematically synchronized single link pendulums. The motion of
the dissimilar modeled systems (dashed line) is matched exactly and overlaps while the measured
motion of the three physical system is matched as well. The discrepancy of the modeled and
physical system is due to non-conservative forces.
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Table 3.3: Double pendulum coefficient equations and experimental parameters

Coefficient Coefficient System 1 System 2
Index Value (m̌=2) (m̌=2)

KMCs M1,1 28,175 g-cm2 l2
11m11 + l2

12m12 + l2
1(m21 +m22)

M1,2 23,800 g-cm2 l1(l21m21 + l22m22)
M2,2 32,900 g-cm2 l2

21m21 + l2
22m22

G1 1,715 g-cm l11m11 + l12m12 + l1(m21 +m22)
G2 1,190 g-cm l21m21 + l22m22

Masses (g) m11= 5.0 m11=52.6
m12=35.0 m12=29.1
m21=14.0 m21=23.0
m22=35.0 m22=28.0

Lengths (cm) l1=20.0 l1=20.0
l11=7.0 l11=5.0

l12=14.0 l12=15.0
l21=10.0 l21=12.4
l22=30.0 l22=32.4

3.1.4.2 Results

As before, each pendulum’s angular kinematics were recorded five times (10 total), aver-

aged, and filtered with a 2nd order Butterworth filter at 6 Hz. The results of these angular positions

are illustrated in Figure 3.5 and compared with the ideal predicted systems.

The motion for both link 1 (upper link) and link 2 (lower link) was in agreement with

model conditions through around 4 seconds, but were in good agreement between experimental

measurements throughout the whole trial, which was 12 seconds. This movement of the two

systems can be seen in Figure 3.6. All collected data deviates less for link 1 than link 2, which can

be explained by the more chaotic movement of the lower link and also because of more variability

due to friction in the additional middle pivot.

Even with the frictional and damping forces that were present in the physical verification,

its still is able to demonstrate that two dissimilar chaotic systems can achieve the same motion by

kinematically matching the two systems. The method can be improved with some considerations
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Figure 3.5: Comparison of double pendulum model and experimental results. Shows the rotational
link position analysis.

and modeling of external forces. To enhance this method, I will now look at inducing symmetry

between two physically asymmetric systems that both experience an external collision.
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Figure 3.6: Motion of two kinematically synchronized double link pendulums.

3.2 Passive Synchronization of Dynamic Systems with External Collisions

Balancing an asymmetric gait begins with understanding how the underlying dynamics

govern or influence its motion. This section will expand on the methods presented earlier in the

chapter and will attempt to induce symmetry in dissimilar rotating systems that experience an

external collision. A new set of KMCs that define the effect of heel strike in simple walker models

will be investigated and applied to solve for symmetry in two asymmetric PDWs. Insight on

such systems can provide better models to more accurately predict and understand the behavior of

human gait, while also showing what limitations are involved in human testing. These systems can

also be useful in the fields of manufacturing, robotics, and especially rehabilitation engineering.

3.2.1 Methods

The external collisions considered in this section are applied to the ends of two inverted

double link pendulum systems (commonly referred to as a compass gait model) similar to the one

presented in section 3.1.4, and as shown in Figure 3.7c. The free swinging motion of these systems

is derived using the Lagrangian method presented in the previous section with an additional number

of equations that account for the collision applied.

These collision events, or heel strikes, are considered inelastic in order to better represent

the impacts that occur during walking and other practical scenarios. The collisions are also

considered instantaneous on a non-slipping surface with no variable friction (i.e. infinite friction).

28



(a) (b) (c)

θ1

m11

m12

m21

m22

θ2

m11

m12

m21

m22

θ2

θ1
θ2m11

m12

m21

m22

mh

θ1

Figure 3.7: The evolution of the KMC matching study. It begins with matching the motion of free
swinging systems, but is later adapted to systems that undergo an external collision

3.2.1.1 Free-Swinging Motion

We begin with using the same Lagrangian technique from the previous section to derive the

uninhibited swinging motion of these two-link walkers. Equation 3.9 shows the standard form of

the planar dynamics.

M[θ ]θ̈ +N[θ , θ̇ ]θ̇ +G[θ ] = T = 0 (3.9)

The coefficients that are present in these matrices are what govern the motion of this

system. The KMCs are developed by gathering the terms that are repeated, and then grouping them

together. This simplifies any dynamics computation and allows us to later match two dissimilar

systems. The full derivation of the KMCs of this particular system are shown in Appendix B. After

finding the corresponding KMCs we can evaluate each specific coefficient that is present in the M,

G, and N matrices.

[M]2̌,2̌sym =

 a bcos(θ1 −θ2)

bcos(θ1 −θ2) c

 (3.10)

29



The coefficients (KMCs) a, b, and c are shown in 3.11 - 3.13.

a = m22(L21)
2 + m21(L22)

2 + LL2(mh+m12 +m11) (3.11)

b =−LL((LR−L12)m12 +m11(LR−L11)) (3.12)

c = m12(LR−L12)
2 +m11(LR−L11)

2 (3.13)

The N matrix is not necessary when matching two walkers because it consists of the same

KMCs that are shown in the previous matrix. However, for clarity and consistency, it is presented

below.

[N]2̌,2̌ =

 0 b sin(θ1 −θ2)

−b sin(θ1 −θ2) 0

 (3.14)

The gravity matrix, G, is the last component needed to identify the free swinging motion

of a compass gait PDW.

[G]2̌,2̌ =

 d sin(θ1)gravity

e sin(θ1)gravity

 (3.15)

where,

d = m22(L21) + m21(L22) + LL(mh+m12 +m11) (3.16)

e = m12(LR−L12)+m11(LR−L11) (3.17)
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The M, N, and G matrices describe the swinging motion of systems that are not under any

external torques or forces, other than gravity.

However, in order to simulate an external collision, velocities before and after impact

need to be calculated using the conservation of angular momentum. The pre-collision velocity

values are easily extracted from the freely swinging system just before impact. The post-collision

velocity of each link is calculated by applying the law of conservation of angular momentum for

the entire system about the origin, and for the second link rotating about the first. The equations

for conservation of angular momentum for a double link pendulum are shown in 3.18.

~L11 x vm11
pre + ~L12 x vm12

pre + ... ~Lň,m̌ x vmň,m̌
pre (3.18)

~L11 represents the distance from the rotating origin point to the the corresponding mass,

m11 shown in 3.8. The same cross product is applied for all the masses in the system. The resulting

pre-collision equations are then set equal to the post-collision equations, shown in 3.19.

~L11 x vm11
post + ~L12 x vm12

post + ... ~Lň,m̌ x vmň,m̌
post (3.19)

This particular PDW model contains two joint angles, thus two equations are formed for

both the pre-collision and post-collision effect, resulting in a 2x2 matrix. These matrices are shown

in B.1.

Qpreθ̇pre = Qpost θ̇post (3.20)

where,

[Qpre]
2̌,2̌
sym =

 f cos(θ1 −θ2)+g h

g 0

 (3.21)
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[Qpost ]
2̌,2̌
sym =

 j+ k cos(θ1 −θ2) i+ k cos(θ1 −θ2)

j k cos(θ1 −θ2)

 (3.22)

The KMCs that are present within the collision matrices are shown in equations B.4-B.9.

f = LLm22(L11) + m21LR(L22) + LLm12(L12) + LL LRmh + m22LR(L21) (3.23)

g =−m21(LL−L21)(L21) − m22(LL−L22)(L21) (3.24)

h =−(LR−L12)m12(L12) − m11(LR−L11)(L11) (3.25)

j = (LL−L21)
2m21 +(LL−L22)

2m22 +2(LL−L21)(LL−L22)m22 (3.26)

k =−LR((LL−L21)(m21 +m22)+(LL−L22)m22) (3.27)

i = m11(L11)
2 + m12(L12)

2 + LR2mh+LR2m22 +LR2m21 (3.28)

It is important to note that no moments are created from the resulting collision forces, thus

no additional torques are applied to the system.

Now we can examine the KMCs of one system and compare them to another in order to

solve for symmetry. The complete list of KMCs needed to match any two link walkers with two

masses per link and a hip mass are shown in table 3.4. With these KMCs, I can now calculate

the motion of two systems that have physically asymmetric masses and mass distributions and
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Table 3.4: Complete list of KMCs to match PDW models. These equations are used to match any
dissimilar compass gait PDWs that have the same angular dynamics and no torque applied.

Coefficient
Index Corresponding KMC(s)

M1,1 a
M1,2 bcos(θ1 −θ2)
M2,1 bcos(θ1 −θ2)
G1 d sin(θ1)gravitiy
G2 esin(θ1)gravitiy

Qpre1,1 f cos(θ1 −θ2)+g
Qpre1,2 h
Qpre2,1 g
Qpost1,1 j+ k cos(θ1 −θ2)
Qpost1,2 i+ k cos(θ1 −θ2)
Qpost2,1 j+ k cos(θ1 −θ2)
Qpost2,2 k cos(θ1 −θ2)

induce symmetry, or synchronize them. Note, similar to the previous section, only the computed

end values of these collision and free swinging coefficients determine the dynamic behavior of the

rotating systems.

The following section will present the verification of the KMC matching technique for two

dissimilar PDW models. The approximate physical asymmetry is illustrated in Figure 3.8.

3.2.2 Simulation Set-Up

To verify the KMCs presented earlier, two physically asymmetric inverted double pen-

dulum systems were evaluated using two methods; analytical and numerical. The asymmetry

was applied by changing the values of certain masses between systems and then allowing the

remaining variables to be solved. In order to be able to solve such a complex set of equations,

several combinations of equations were attempted with a different number of masses on each link,

mass values, and link lengths. A base system (Figure 3.8a) was chosen and compared to a different,

physically asymmetric system (Figure 3.8b). The goal was to show that both systems can behave

identically by matching their KMC values. The asymmetry was induced by assigning different
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Figure 3.8: Physical illustration of two semi-synchronized PDW compass gait models. (a) Is the
given system that we are using to set the KMC values. (b) The hip mass (mh) and left thigh mass
(m12) are specifically increased and some distances are changed along the limbs.

parameter values for certain masses and mass distributions. An explicit solution was attempted

with the remaining unknown variables using the eleven KMC equations. Several different equation

configurations and variables were explicitly solved for using this method.

The numerical approach for this study was a brute force method that is commonly used in

computer science and numerical methods. The brute force calculation evaluates a large number

of combinations including values for mass, mass distribution, and link length. System 1 in this

calculation is arbitrarily chosen and the KMCs are calculated based on the physical attributes.

In order to find a viable match, several physical combinations were calculated. These different

combinations were then compared to the model system with a specified threshold, and if the

calculated system was below this threshold, it was included as a possible match.

To compare the results of these methods, a simulation was created to show the difference

in motion of both systems, similar to those in the previous sections. Average step length data, for

left and right step, was collected throughout the simulations and compared after ten steps. The

asymmetry, calculated using Equation 3.29, showed the percent difference in the spatial data of the

systems.

PercentAsymmetry =
(Lstep −Rstep)

((Lstep +Rstep)0.5)
(3.29)
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In addition, the joint angles were compared and analyzed for both left and right step. All

final data was calculated, simulated, and analyzed using Matlab®.

3.2.3 Results

The analytical approach to this study was unable to find any matching system. As stated

earlier, several different equation configurations were used and all platforms used to solve these

equations, including Mathematica®, Mathcad®, and Matlab®, resulted in similar failure. Even the

variables being solved were changed, but still no matching motion could be achieved between these

systems. This might have been due to the complexity of the equations or the difficult computation

involved. This may also suggest a complete match is not feasible with collision equations or any

walking models.

The numerical brute force method, however, did result is successful matches below a six

percent threshold as shown in Figure 3.9. Hundreds of successful semi-symmetric systems were

found, but not all were able to show a consistent and stable gait pattern. The systems that did show

stable gait were compared to the base system in terms of spatial parameters, and joint angles.

The step length asymmetry after ten steps was calculated for both the left and right step,

using equation 3.29. The left step length was only 2.5 percent different between the two systems,

while the right step showed a 9.6 percent asymmetry, as shown in Table 3.5. Although this seems

high for a walking model, this is likely due to the shorter right leg of the matched system.

The joint angle data, however, was very close for all steps as indicated by Figure 3.9 which

shows a close match for the duration of the step for both angles. Again, the slight difference in the

θ1 angle might be due to difference in leg length and the angle of the colliding foot changing faster

then the base system.

Table 3.5: Results comparing two physically asymmetric PDWs
Comparing Systems

Left Step Length Right Step Length
2.5% 9.5%
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Figure 3.9: Joint angle differences of two dissimilar compass gait models.

Despite the fact that there were semi-symmetric systems found, no completely synchro-

nized systems emerged. Even if longer computations and larger parameters searches are per-

formed, I do not think a perfect match can be achieved in these types of systems. This is most

likely due to the force inequalities that occur when two systems do not possess the same kinetic

energy because of varying mass values.

Although there was limited success of this method, it can be used to synchronize systems

within a certain percentage, which still might have applicable usage in the fields of robotics and

rehabilitation engineering. With this result, its clear that the collision symmetry and their KMCs

lack the same generalizability as the previous section.
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Chapter 4: Walking Symmetry

With the complexity of modeling the human’s conscious actions and reactions in gait, I

expand the work of the previous chapter and adapt the concept to human walking with some

experiments on altering gait patterns. This chapter presents a gait study on the passively induced

symmetry of human walking. Here I investigate how changing the physical configurations of two

symmetric limbs change the step length, step time, and ground reaction forces. The goals of this

chapter are as follows:

1. Find asymmetric physical configurations that can exhibit symmetric behaviors.

2. Investigate the difference in how conscious and subconscious control affects gait with these

physical changes.

3. Show how changes in arm swinging influence the gait with different physical limb combina-

tions.

In general, this study can be used to tie together the passive synchronization methods

previously discussed and the symmetry, or asymmetry, present in human gait that inherently

involves this conscious factor.

4.1 Procedure

A complete outline for the experiments and the setup are presented in this section. Partic-

ipants in this study were asked to walk for several minutes with different physical configurations,

with these including both conscious and distracted sessions.

All the experiments were performed on a Computer Assisted Rehabilitation ENvironment

(CAREN) system, shown in Figure 4.1. This system includes a split belt treadmill, two individual
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4

2

3

1

Figure 4.1: An image of the CAREN system and environment. 1) A 180 degree screen projector
for virtual environments. 2) Infrared cameras to track marker motion. 3) Six degree of freedom
platform. 4) Split belt treadmill and force plates.

force plates, and a six degree of freedom platform. The ground reaction force data was gathered

from these force plates for both the left and right leg of each subject. Specifically, this study

examines the push-off, vertical, and braking forces.

The split belt treadmill used in this study was set to equal speeds, and was based on the

steady state walking (physically unaltered walking) velocity of each participant. The baseline, or

steady state walking, was calculated based on an average of three different 10 meter walking tests,

where the participant was told to walk at a normal pace.
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The CAREN system also includes a motion capture system which provided the spatial data

for this study. All the kinematic analysis of all the walking studies was done using a Vicon®

infrared camera motion tracking system. This system includes 10 Vicon® bonita B10 cameras

that record at 120 Hz. Each participant was equipped with 8 infrared markers (14 mm Diameter),

placed on the toe, heel, knee and pelvis for both the left and right sides of the body.

All data was processed using a Matlab® script to calculate average step length, step time,

and ground reaction forces. Additional processing was also done in Matlab®, including performing

ANOVA statistical analysis, generating data figures, and animations.

4.1.1 Physical Parameters

Each combination of physical parameters was performed once, with the exception of the

baseline walking that was performed at the start and end of the experiment. The order of these

combinations was randomized for each subject, excluding sessions one, two, and fourteen. For

each of the ten different participants tested, the first two sessions were always baseline walking

without the distraction device, followed by baseline walking with the device (device explained in

section 4.1.2). The last session (fourteen) performed by each participant was an additional baseline

study (without device) to evaluate any adaptation that might have developed.

The length of each individual walking session was approximately two minutes, with vary-

ing times in between to apply physical alterations. To avoid the effects of adaptation from previous

physical combinations in the study, only the last thirty seconds was evaluated in each session.

The total walking time for the entire experiment was approximately twenty eight minutes for each

subject, and a short break was available to the participants between sessions, but this was not

compulsory.

The fourteen different physical combinations of this walking study are shown in Table 4.1.

The leg length device was attached to the non-dominant foot of the participant and is shown in

Figure 4.3. The two settings for the applied leg length change were small and large, measuring

0.027 meters (1.05 inches) and 0.052 m (2.05 inches) respectively. It was designed to be under
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Table 4.1: All combinations of settings that were applied to the participants. Note: combinations
3-13 were randomized for each participant.

Combination Leg Length Change Weight Applied Distraction Device
1 None None None
2 None None Included
3 None Small None
4 None Large None
5 None Large Included
6 Small None None
7 Small Small None
8 Small Large None
9 Large None None

10 Large None Included
11 Large Small None
12 Large Large None
13 Large Large Included
14 None None None

0.350 kg (0.77 lb) for the high setting and under 110 g (0.25 lb) for the lower setting. These

small mass values ensured that this shoe would only simulate pure leg length change and not add

unwanted weight. For the application of weighted walking, a weighted ankle strap with several

lead weight inserts was attached to the dominant leg. There were two distinct mass values for this

parameter, as shown in Figure 4.4. The small weight size was approximately 2.3 kg (5.07 lb), and

the large was 4.6 kg (10.14 lb). An additional strap was included as to note interfere with any

infrared position sensing markers.

4.1.2 Distraction Device

To test the dual task walking effects of the added physical parameters, a small device was

used to distract the participants. This device allows us to test the more passive nature of human

walking which was a vital part of this walking study. A passive walk refers to the subconscious

state of gait when a subject does not actively think about how they are walking. Inherently, when

a subject is asked to participate in a gait study, they are more inclined to think about how their gait

is behaving, thus consequently changing the otherwise passive nature of the gait cycle.
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Figure 4.2: Illustration of the distraction device that was used in the experiment. Participants were
asked to balance the ball in the middle of the device while walking for two minute sessions.

In addition to providing a distraction, the device will allow me to explore the differences in

arm swinging and non arm swinging during gait. This portion of the walking study will show how

the body uses arm swinging to compensate for changes in physical parameters of the lower limbs,

and if arm-swinging improves the gait symmetry.

The device, illustrated in Figure 4.2, requires the subject to balance the small white ball on

a half cylinder for the entire duration of the two minute sessions. It was constructed from an 18

inch long (1 inch diameter) PVC pipe and rubber coated to provide a smooth surface for the ball.

Two small crutch handles were attached to both ends of the device, providing an ergonomic grip

and secure hold during walking.

The distraction device was used in only testing the largest settings for each parameter (i.e.

Large Leg Length and/or Large Weight) for a total of four configurations. A short training session

was available for each subject to become acquainted with the device while walking simultaneously.

To be able to differentiate the data, two additional markers were placed on either end of the device.
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(a) (b)

0.027 m 0.052 m

Figure 4.3: The platform shoe that was used to simulate two leg length increases. (a) Had no
additional padding while (b) had a rubber slab with PVC supports to increase height.

Although these markers were not used in the analysis of this experiment, they might be helpful in

other studies using this data studying the symmetry of left and right side balance during walking.

4.2 Participants

There were ten subjects (8 male, 2 Female) that participated in the walking study, all with

limited to no exposure with physically induced asymmetric walking. The age of the participants

ranged from 20 to 30 years old, with no physical impairments, past knee injuries, or large leg length

discrepancies. The average height, leg length, weight, and walking speed of the participants was

1.785 m (70.3 in), 0.981 m (38.6 in), 82.8 kg (182.5 lbs), and 1.22 m/s (48.03 in/s), respectively.

None of the participants expressed any difficulty performing the walking tasks with or without the

distraction device.

Nine of the ten participants in the study were right foot dominant. The data of the left foot

dominant subject was mirrored to be included in the analysis. Note, the dominant foot was always

used for the applied weight and the leg length change was always applied to the non-dominant

foot for consistency. All experiments were conducted with the approval of the Institutional Review

Board at the University of South Florida.
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(a) (b)

2.3 Kg 4.6 Kg

Figure 4.4: The two different ankle weights used in this walking experiment. An additional strap
was included for the heavier weight (b)

4.3 Results and Discussion

The distraction device showed minimal effect for spatial and temporal symmetry, as well

as vertical and push-off ground reaction forces. It did, however, show a statistical significance

for the braking force symmetry (F(1,125) = 16.52, p< 0.0001). The post hoc analysis showed

significant difference in braking force between distracted and conscious walking. This result

demonstrates how the distracted gait can not accurately anticipate or mitigate the foot speed or

force upon colliding with the floor. It also implies that the human motor control reacts well,

subconsciously, to adverse physical changes that might want to induce asymmetry in gait in spatio-

temporal parameters. The remaining analyses are for walking without the distraction device.

The lack of differences in the spatio-temporal data with and without arm-swinging might

suggest that it does not assist or compensate enough for these physical changes. Without the as-

sistant of arm-swinging, the body most likely uses other techniques to appropriately balance itself,

including moving the torso (center of mass) to help ease imbalances due to physical asymmetry.
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Figure 4.5: The combination of physical parameters and distraction device.

Other significant statistical data was found for differences in vertical and push-off forces.

Vertical reaction forces showed a statistically significant difference for leg lengths (F(2,125) =

111.52, p<0.0001) and weights added (F(2,125) = 19.15, p<0.0001). A post hoc test for both

leg length and weight revealed noticeable differences in both factor levels. Similar results were

shown for the push-off reaction, with a statistical significance for leg length (F(2,125) = 111.52,

p<0.0001) and weight (F(2,125) = 111.52, p<0.05). (All ANOVA and post-hoc results are shown

in Appendix C)

The spatial results of the experiments indicated that added leg weight did not noticeably

influence the step length symmetry, however it did show an effect of temporal parameters. From

the data shown in Figure 4.6, it is clear that the step length for both left and right leg remains

unaffected by the added weight. However, the weight did slow down the affected limbs in almost

all cases. Perhaps this indicates that because the muscles in the lower limbs are large, they are able

to compensate, spatially, for the added weight, while temporally they are impeded. This might
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Figure 4.6: Comparison of conscious and subconscious walking. This figure shows the differences
in spatio-temporal results.

also suggest that the human legs are able to ignore asymmetrically applied weight and maintain a

symmetric step length.

In contrast, added leg length had noticeable effects on both spatial and temporal gait

symmetry. For every increase of the leg length parameter both the step length and step time

differences increased. These differences, illustrated in Figure 4.7, suggest that having symmetric

leg lengths will likely increase the chance for a symmetric gait. This data is in agreement with the

previous section, which indicated that even a small difference in leg length (LLD) can cause large

percentages of gait asymmetry.

When analyzing the data for configurations of both the physical parameters of leg length

and ankle weight together, the effects are amplified. The data shown in Figures 4.7 and 4.8

show that when both are combined at a high setting, the effects are increased dramatically. For

instance, the step time of the combined parameters is close to double the value of either parameter

individually. This trend is also evident in the ground reaction force symmetry. Further studies are
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Figure 4.7: Three dimensional figure showing spatio-temporal differences. The x and y axes
indicate the physical parameter changes (i.e. 0 is no change and 2 is the large setting).

needed to investigate how the two behave when applied to a single leg, and when the weight is

placed in locations other than the ankle.

This research shows that certain physical alterations can affect the spatial and temporal

parameters of human gait, which might have implications for gait rehabilitation. For instance, if

a patient exhibited asymmetric spatial gait parameters (step length) they might be able to apply a

weight of small leg length change to a specific location to bring them closer to symmetry. Even if

this does not bring a patient back to complete symmetry, a more symmetric gait might be beneficial

in terms of exertion and perception.

Further developments and studies need to be performed in order to investigate how adap-

tation of these physical changes is retained. If a trend of retention is shown, then people with

asymmetric gait might be able to wear a leg lengthening shoe and/or apply a weight to one of their

legs to train for improved gait symmetry. This would make rehabilitation significantly easier to

perform and financially beneficial to the patient. Future studies might also incorporate the physical

changes to just one leg. and how the added effects alter gait symmetry.
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Figure 4.8: Ground reaction force data for all combinations of physical parameters.
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Chapter 5: Conclusions

Induced symmetry of kinematics proved to be successful between two rotating dissimilar

dynamic systems. Simulating motion without collision events demonstrated that there was no

difference in the kinematics for the experiment. Just as the method suggested, the two degree

of freedom system (two double-link pendulums) resulted in exact kinematic matches for the entire

simulation time because their respective KMCs were equal. This is particularly significant for such

a system, as the motion of each link is highly nonlinear. The physical experiment results verified

the matched motion with a slight discrepancy that resulted from non-conservative forces such as

friction. While we have been able to synchronize dynamics of two uncoupled dissimilar rotating

systems over time, it is clear that internal forces, dynamics and time of such a set of systems cannot

be synchronized. This is due to the mass values; in order for forces to be the same between two

systems, they must have the same mass values at each location. (i.e. the systems would not be

dissimilar).

The collision matching experiment showed that only a percentage of kinematic symmetry

can be induced between two systems that experience an external collision. This is likely due to

the differences in the kinetics (energy) of each system, and as both systems comprise of different

mass values, an exact match will never be achieved between two physically asymmetric PDWs.

The simplicity of the models in this experiment also suggest that the more complex and realistic

the models become, the harder inducing kinematic symmetry will become.

This generalized method shows it is possible to manipulate limb movements by adding or

removing masses to key locations along a swinging limb that can assist in balancing out asymmetric

walking patterns created by some trauma or neurological disorder. For instance, we can analyze

the kinematics between two limbs and improve the intra-limb synchronization with passive means.
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The final goal would be the ability to incorporate our results in assisting with designing a prosthetic

device best suited for a person’s overall gait. This would involve designing a device that requires

less energy needed to walk while maintaining a partially synchronized walking pattern.

The walking experiment showed that weight and leg length both influence the gait sym-

metry in human walking. Distracted and non arm swinging gait did not show any affect to the

added physical asymmetry. While spatially and temporally the distracted gait was unaltered, the

braking force during distracted walking showed slight differences. This might suggest a loss of

heel strike anticipation during dual task walking. Knowing exactly how each of these affect the

gait symmetry can have implications for improving and developing new rehabilitation devices. The

study also indicates that a person with a physically altered gait can improve their symmetry, but

can never achieve a completely symmetric gait.
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[19] I. Handz̆ić, E. Barno, E. V. Vasudevan, and K. B. Reed. Design and pilot study of a gait
enhancing mobile shoe. J. of Behavioral Robotics, 2(4):193–201, 2011.
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Appendix B: KMC Derivation for Collision Events

This sections shows the complete derivation of the Kinematically Matched Coefficients of

the heel strike equations in a PDW. We begin with the Nine Mass Model and show it’s two link

phase walking, shown in Figure B.1.

B.1 Nine Mass Model

First, in order to model the system in Figure B.1 into a compass gait, we set the shank

masses (ms1L,ms2L,etc.) and angle q3 to zero. This allows the system to become a two-link

model, similar to that of an inverted double pendulum system. I reference [25] and follow a

similar procedure to begin calculating the pre-heel strike and post-heel strike velocity, then I will

gather the KMCs necessary for synchronization. We begin by applying the conservation of angular

momentum after gathering the pre-collision velocities from the free swinging system.

This particular PDW model contains two joint angles, resulting in two 2x2 matrices, one

for the pre-collision and one for the post-collision.

Qpreθ̇pre = Qpost θ̇post (B.1)

where,

[Qpost ]
2̌,2̌
sym =

Qpost
11 Qpost

12

Qpost
21 Qpost

22

 (B.2)
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Figure B.1: A nine mass PDW model used to develop KMCs of the compass gait.
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[Qpre]
2̌,2̌
sym =

Qpre
11 Qpre

12

Qpre
21 Qpre

22

 (B.3)

The KMCs that are present within the collision matrices are shown in equations B.4-B.9.

Qpre
11 = LL∗mt2R∗ cos(q1−q2)∗ (a1R+b1R+ c1R+ c2R) + ...

mt1L∗ cos(q1)∗ (LR∗ cos(q2)−a2L∗ cos(q1))∗ (a1L+ ...

b1L+b2L+ c1L+ c2L)+LL∗mt1R∗ cos(q1−q2)∗ (a1R+ ...

b1R+b2R+ c1R+ c2R)+LL∗LR∗mh∗ cos(q1−q2)+ ...

mt1L∗ sin(q1)∗ (LR∗ sin(q2)− ...

a2L∗ sin(q1))∗ (a1L+b1L+b2L+ c1L+ c2L)− ...

mt2L∗ cos(q1)∗ (cos(q1)∗ (a2L+b2L)− ...

LR∗ cos(q2))∗ (a1L+b1L+ c1L+ c2L)− ...

mt2L∗ sin(q1)∗ (sin(q1)∗ (a2L+b2L)− ...

LR∗ sin(q2))∗ (a1L+b1L+ c1L+ c2L)

(B.4)

Qpre
12 =−a2R∗mt1R∗ (a1R+b1R+b2R+ c1R+ c2R)− ...

mt2R∗ (a2R+b2R)∗ (a1R+b1R+ c1R+ c2R)
(B.5)

Qpre
21 =−a2L∗mt1L∗ (a1L+b1L+b2L+ c1L+ c2L)− ...

mt2L∗ (a2L+b2L)∗ (a1L+b1L+ c1L+ c2L)
(B.6)

Qpost
11 = a2L2 ∗mt1L+a2L2 ∗mt2L+b2L2 ∗mt2L + ...

2∗a2L∗b2L∗mt2L− ...

LR∗a2L∗mt1L∗ cos(q1−q2)−LR∗a2L∗mt2L∗ cos(q1−q2)− ...

LR∗b2L∗mt2L∗ cos(q1−q2)

(B.7)
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Qpost
12 = mt2R∗ (a1R+b1R+ c1R+ c2R)2 + ...

mt1R∗ (a1R+b1R+b2R+ c1R+ c2R)2 + ...

LR2 ∗mh−LR∗mt2L∗ cos(q2)∗ (cos(q1)∗ (a2L+b2L)− ...

LR∗ cos(q2))−LR∗mt2L∗ sin(q2)∗ (sin(q1)∗ (a2L+b2L)− ...

LR∗mt1L∗ cos(q2)∗ (LR∗ cos(q2)−a2L∗ cos(q1))+ ...

LR∗mt1L∗ sin(q2)∗ (LR∗ sin(q2)−a2L∗ sin(q1))

(B.8)

Qpost
21 = mt2L∗ (a2L+b2L)2 +a2L2 ∗mt1L (B.9)

Qpost
22 =−LR∗ cos(q1−q2)∗ (a2L∗mt1L+a2L∗mt2L+b2L∗mt2L) (B.10)

After simplifying the above equations and applying several trigonometric identities, the

pre-heel strike and post-heel strike matrices now only consist of 6 KMCs.

[Qpre]
2̌,2̌
sym =

 f cos(θ1 −θ2)+g h

g 0

 (B.11)

[Qpost ]
2̌,2̌
sym =

 j+ k cos(θ1 −θ2) i+ k cos(θ1 −θ2)

j k cos(θ1 −θ2)

 (B.12)

The KMCs that are present within the collision matrices are shown in equations B.13-B.18.
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f = LL∗mt2R∗ (a1R+b1R+ c1R+ c2R)+ ...

mt1L∗LR∗ (a1L+b1L+b2L+ c1L+ c2L)+ ...

LL∗mt1R∗ (a1R+b1R+b2R+ c1R+ c2R)+ ...

LL∗LR∗mh+mt2L∗LR∗ (a1L+b1L+ c1L+ c2L)

(B.13)

g =−mt1L∗a2L∗ (a1L+b1L+b2L+ c1L+ c2L)− ...

mt2L∗ (a2L+b2L)∗ (a1L+b1L+ c1L+ c2L)
(B.14)

h =−a2R∗mt1R∗ (a1R+b1R+b2R+ c1R+ c2R)− ...

mt2R∗ (a2R+b2R)∗ (a1R+b1R+ c1R+ c2R)
(B.15)

j = a2L2 ∗mt1L+a2L2 ∗mt2L+b2L2 ∗mt2L+2∗a2L∗b2L∗mt2L (B.16)

k =−LR∗ (a2L∗mt1L+a2L∗mt2L+b2L∗mt2L) (B.17)

i = mt2R∗ (a1R+b1R+ c1R+ c2R)2 + ...

mt1R∗ (a1R+b1R+b2R+ c1R+ c2R)2 + ...

LR2 ∗mh+LR2 ∗mt2L+LR2 ∗mt1L

(B.18)
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Appendix C: ANOVA Results for Walking Study

Step Length ANOVA

Step Time ANOVA

Figure C.1: The ANOVA analysis for the spatial temporal differences.
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Vertical Force ANOVA Push-off Force ANOVA

Braking Force ANOVA

Figure C.2: The ANOVA analysis for the ground reaction force differences.
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