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Abstract— The asymmetry of a bevel-tip needle results in the
needle naturally bending when it is inserted into soft tissue.
As a first step toward modeling the mechanics of deflection
of the needle, we determine the forces at the bevel tip. In
order to find the forces acting at the needle tip, we measure
rupture toughness and nonlinear material elasticity parameters
of several soft tissue simulant gels and chicken tissue. We
incorporate these physical parameters into a finite element
model that includes both contact and cohesive zone models to
simulate tissue cleavage. We investigate the sensitivity of the tip
forces to tissue rupture toughness, linear and nonlinear tissue
elasticity, and needle tip bevel angle. The model shows that the
tip forces are sensitive to the rupture toughness. The results
from these studies contribute to a mechanics-based model of
bevel-tip needle steering, extending previous work on kinematic
models.

I. INTRODUCTION

Needle insertion into soft tissues is probably the most com-
mon invasive surgical procedure used for either therapeutic
drug delivery or tissue sample removal from deep within the
body. Inaccurate needle placement may result in malignan-
cies not being detected during biopsy, radioactive seeds not
being in the correct location to destroy cancerous lesions
during brachytherapy, and traumatic or even fatal effects
while performing anesthesia. Thus, for medical diagnoses
and treatments, the needle must reach its intended target.
But tissue inhomogeneity and anisotropy, organ deformation,
and physiological processes, such as respiration and flow of
fluids, cause the needle to deviate from its intended path. A
possible method to mitigate needle targeting errors is to use
a needle that can be robotically steered in the body to reach
the intended target.

Several groups have examined the use of robotically
steered flexible needles through tissue [3], [8], [9], [16],
[18], [19], [20], [21]. Planning such procedures requires an
accurate model of the needle-tissue interaction. One of the
methods to steer needles through the body uses needles with
standard bevel tips that naturally cause the needle to bend
when interacting with soft tissue [20]. This phenomenon is
attributed to the asymmetry of the bevel edge, which results
in bending forces at the needle tip. Ideally, a mechanics-
based model of the tip forces would be used to predict needle
behavior based on information about geometry and material
properties.

Several research groups have developed physics-based
needle and soft tissue interaction models that are not specific
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to bevel-tip needles [2], [6], [7], [11], [12], [15]. A summary
of these studies and other non-physics-based needle-tissue
interaction models is provided in [14]. In all these studies,
the objective of the researchers was to develop models to
render simulation of needle-tissue interaction for real-time
applications without specifically focussing on the interaction
forces at the needle tip. Experimental work has identified
forces (due to puncture, cutting, and friction) developed
during needle insertion through tissue [13], [17]. Further,
in [21] a kinematic model specifically for bevel-tip needles
was presented whose parameters were fit using experimental
data, but this model did not consider the interaction of
the needle with an elastic medium. None of these studies
focused on relating the tip forces to the amount of needle
deflection based on the fundamental principles of continuum
and fracture mechanics.

In this research we study the effect of tissue material and
needle tip geometric parameters on tip forces. Using finite
element (FE) simulations, we show the relationship between
the bevel angle and the forces generated at the needle tip.
Using needle insertion experimental studies with gels and
tissue, we extract the material properties. We incorporate
these physical values into an FE simulation. The FE model
includes contact between the needle tip and tissue, and also
incorporates a cohesive zone model to simulate the tissue
cleavage process.

This paper is organized as follows: Section II presents
the mathematical preliminaries required to obtain the tissue
elasticity and toughness values. Section III describes the ex-
periments to measure tissue elasticity and toughness. Section
IV provides details on the FE simulations and sensitivity
studies. Finally, Section V summarizes the work done and
provides possible directions for future work.

II. TISSUE ELASTICITY AND TOUGHNESS

The deflection of a bevel-tip needle is a function of
several parameters (Figure 1): the needle’s Young’s modulus(
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Fig. 1. Schematic of a bevel-tip needle interacting with a soft elastic
medium.
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Fig. 2. Stresses acting on body under uniaxial compression, where the
solid and dashed lines represent the body before and after compression,
respectively.

and tip bevel angle (α); the tissue’s nonlinear (hyperelas-
tic) material property

(
C10, units: N

m2

)
, rupture toughness(

Gc, units: N
m

)
, and coefficient of friction (µ); and input

displacement from the robot controller (u, units: m). Di-
mensional analysis provides an organized method to group
dimensionally similar variables [5]. Thus, the radius of
curvature of the needle (ρ , units: m) can be written as a
function, f , of these parameters

ρ = f

E, I,α︸ ︷︷ ︸
needle

,C10,Gc,µ︸ ︷︷ ︸
tissue

, u︸︷︷︸
input

 . (1)

Performing dimensional analysis and invoking Buckingham’s
Π theorem on this system results in the following Π-groups,
for primary variables E, C10, and Gc:

Π1 =
ρC2

10
EGc

, Π2 =
IC5

10
EG4

c
, and Π3 =

uC2
10

EGc
. (2)

Thus, the non-dimensional form of (1), for some function,
g, is given by

ρC2
10

EGc
= g

(
IC5

10
EG4

c
,

uC2
10

EGc
,α,µ

)
. (3)

From (3) it is observed that the radius of curvature is
dimensionally scaled by both the tissue elasticity (global
parameter) and also the tissue rupture toughness (local pa-
rameter), which tells us that in additon to α and µ , the
effect of both of these parameters (C10 and Gc) needs to
be investigated. In this section, we present a mathematical
formulation to evaluate the tissue elasticity and toughness to
be incorporated in an FE simulation framework.

A. Tissue Elasticity

The deformation of materials under strains greater than
1%-2% is described by the theory of nonlinear elasticity, and
hyperelastic models are commonly used. For a hyperelastic
material, the Cauchy stress tensor, σσσ , can be derived from
a strain energy density function, W [10]. There are various
formulations for the strain energy density function depending
on the material. The material parameters associated with the
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Fig. 3. Schematic describing the procedure to calculate the rupture
toughness of an elastic material during needle insertion.

hyperelastic model are experimentally derived using tensile,
compression, shear, or biaxial tests. In this study, uniaxial
compression experimental data was used and it fit the Neo-
Hookean model well.

In order to fit the experimental data to a nonlinear elastic
constitutive relation, we proceed to derive the stress-strain
relationship. For a body under uniaxial compression (Figure
2), if y represents the position after deformation of a material
reference initially located at X, we can describe compression
by

y = λ1X1e1 +λ2X2e2 +λ3X3e3, (4)

where ei and λi, for i = 1 to 3, are the Cartesian base
vectors and stretch ratios, respectively. From (4), the matrix
of the deformation gradient tensor, F, for axisymmetric
(λ1 = λ3 and λ = λ2) and incompressible

(
λ1 = λ3 = 1√

λ

)
materials is computed as

F =
∂y
∂X

=


1√
λ

0 0
0 λ 0
0 0 1√

λ

 . (5)

Using the Representation Theorem [10], σσσ for an
isotropic, homogenous, and incompressible hyperelastic ma-
terial can be derived as

σσσ =−pI+2
{(

∂W
∂ I1

+ I1
∂W
∂ I2

)
B− ∂W

∂ I2
B2
}

, (6)

where I1 and I2 are the principal invariants, B is the left
Cauchy-Green tensor, and p is the Lagrange multiplier (es-
sentially a pressure). The Neo-Hookean strain energy density
function is given by

W = C10 (I1−3) , (7)

where C10 is a material parameter specific to the tissue. In
(7), the principal invariant, I1, can be evaluated from B =
FFT as

I1 = B : I =
2+λ 3

λ
. (8)

225



(a) The RSA II test sta-
tion

(b) Plastisol (soft) gel (c) Plastisol (hard) gel (d) Porcine gel (e) Chicken breast tissue

Fig. 4. Tissue elasticity measurement performed on several materials via uniaxial compression tests using the RSA II, where 1© and 2© are the actuator
and load cell, respectively.

Fig. 5. Representative compressive stress versus strain curves for various
materials recorded using the RSA II.

The Lagrange multiplier, p, in (6) can be evaluated from
the boundary condition

σ11 = σ12 = 0⇒ p =
2C10

λ
. (9)

From (5) and (7) we can compute B2 and ∂W
∂ I1

, respectively,
and using (6) and (9), the compressive stress, σ22, is com-
puted as

σ22 =
2C10

λ

(
λ

3−1
)

, (10)

where stretch ratio is, λ = 1− strain. (10) is used to fit
experimental stress-strain data to obtain C10.

B. Tissue Toughness

As the needle penetrates through material, the insertion
force during this phase includes the force to overcome
friction and resistance due to tissue elasticity, and the force
needed to cut through tissue. Figure 3 provides a schematic
representation of the method we use to extract the toughness.
A similar method has been employed to extract fracture
toughness during needle insertion in [4]. The insertion force
recorded for some distance, L1, travelled by the needle is F1.
The work done, divided by the needle cross-sectional area, A,
to overcome friction and tissue resistance, and to cut through

elastic 
material

needle

force sensor

linear stage

servo motor
(needle spin)

Fig. 6. Experimental setup used to robotically steer a flexible needle though
soft elastic materials and used for toughness measurement.

tissue, G f tc, is given by

G f tc =
1
A

∫ L1

0
F1dL. (11)

Once the needle tip has completely passed through the
material, there is no cutting force. The force recorded during
this phase, for a distance L1 travelled by the needle, is given
by F2. The work done, divided by the needle cross-sectional
area, A, to overcome friction and tissue resistance, G f t , is
given by

G f t =
1
A

∫ L1

0
F
′
2dL, (12)

where L2 is the length of the needle shaft within the material
and F

′
2 = F2

L1
L2

. In order to account for the differences in
frictional force along the needle shaft when the needle tip
has completely passed through the material versus the case
when the needle tip is interacting with the elastic medium,
F2 is scaled by L1

L2
. This scaling assumes that frictional force

varies linearly along the length of the needle shaft. The work
done per unit needle cross-section area, Gc, to rupture and
cut through tissue, is the rupture toughness (effective) of the
tissue and is given by

Gc = G f tc−G f t , (13)

where G f tc and G f t are calculated for various materials using
needle insertion experiments.
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(a) Plastisol (soft) gel (b) Plastisol (hard) gel

(c) Porcine gel (d) Chicken breast tissue

Fig. 7. Insertion force versus distance travelled by needle used for rupture toughness measurement. The representative snapshots show the needle tip
interacting and outside the tissue samples. Data collected in the windows during which the needle tip travelled L1 are used to calculate G f tc and G f t .

III. TISSUE PARAMETER ACQUISITION

Experimental studies on phantom tissues (gels) and real
tissue were performed in order to obtain both tissue elasticity
and toughness parameters. Specifically, we found the Neo-
Hookean model material parameter C10 given in (10) and
the rupture toughness derived in (13). Experiments were
conducted with two variants of plastisol gel (soft and hard
versions), porcine gel, and chicken breast tissue. All tests
were performed at room temperature and the chicken samples
were thawed from freezer prior to the experiments.

In order to obtain values for C10, uniaxial compression
tests were performed on the soft materials using a Rheo-
metrics Solids Analyzer (RSA) II, as shown in Figure 4.
Three 1 cm3 cube samples of each material were prepared
and tested. The compression tests were performed at a strain
rate of 0.001 s−1. Representative stress versus strain curves
for various materials are shown in Figure 5. The experimental
data were fit to the constitutive equation given in (10) to
obtain C10, and Table I provides the mean values of the
tissue elasticity for various materials. Linear elastic models
were also fit to the experimental data and Table I gives the
mean values of the Young’s modulus, Etissue, for the various
materials.

In addition to tissue elasticity, the rupture toughness of
several materials were evaluated using the needle steering
robot shown in Figure 6 [20]. The nitinol needle had a

diameter of 0.71 mm and a tip bevel angle of 55◦. As
the needle penetrated through the material, the insertion
force was recorded using an ATI Nano 17 force sensor.
The material toughness was evaluated for soft and hard
versions of plastisol gel, porcine gel, and chicken breast
tissue using the expression given in (13). Figure 7 shows
the insertion force recorded as the needle travels through
different materials. The needle was driven at a constant
insertion velocity of 0.125 cm/sec and the length, L2, for all
gels was 10.2 cm except for the chicken tissue, which was
7.5 cm. Also shown in Figure 7 are representative snapshots
during which the toughness measurements were made. The
length of the window when the needle tip is interacting and
outside the tissue is given by L1. During the phase when
the needle tip is outside the tissue and only the needle shaft
interacts with tissue, the insertion force is fairly constant.
The rupture toughness for the various materials are provided
in Table I.

TABLE I
MEASURED MATERIAL ELASTICITY AND RUPTURE TOUGHNESS

PROPERTIES FOR GELS AND TISSUE.

Material C10 (kPa) Etissue (kPa) Gc (kN/m) tc (MPa)
Plastisol (soft) 3.6 21.5 39.3 110.6
Plastisol (hard) 4.0 24.2 46.8 131.8

Porcine 4.9 29.6 114.4 322.2
Chicken 3.7 22.1 24.2 68.2
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IV. SENSITIVITY STUDIES

The material parameters obtained from the experiments in
the previous section were incorporated into FE simulations
using ABAQUS [1] in order to evaluate the forces at the
needle tip. Figure 8 shows the various forces acting on
the needle interacting with an elastic medium. The needle
is subjected to compressive and frictional forces along its
needle shaft, and forces due to tip asymmetry. In this paper,
we investigate the effect of rupture toughness, bevel angle,
and tissue elasticity on the forces at the bevel tip.

A. Sensitivity to Tissue Rupture Toughness

In order to simulate the interaction of the needle tip
deforming and rupturing tissue as it travels, we employ a
cohesive zone model (Figure 9). Cohesive zone modeling
techniques are commonly used to simulate interface failure
in composite structures. The cohesive zone is a mathematical
approach to modeling the fact that work must be done
to separate the two surfaces at an interface. This work
is described in terms of a prescribed relationship between
the tractions, t, required to separate the surfaces and the
relative strains, δδδ , of those surfaces. A detailed explanation
of the numerical implementation of cohesive zone models is
presented in [22]; cohesive zone elements are placed between
bulk elements, as shown in Figure 9(a).

The cohesive zone elements are placed between continuum
(bulk) elements and are defined in a small region (1 mm
long and 0.072 mm wide) near the needle tip, as shown
in Figure 10(a). In our FE simulation models, the cohesive
zone is implemented using quadrilateral elements (ABAQUS
element COH2D4), while the bulk elements are a mixture
of quadrilaterals (ABAQUS element CPE4H) and triangular
elements (ABAQUS element CPE3H). The bulk elements
are assigned the nonlinear material properties (C10) given
in Table I, in addition to having geometric nonlinearity. As
the needle tip deforms the tissue and the cleavage process

Fig. 8. Distributed load (compresssive and frictional forces) acting on a
needle shaft as it interacts with an elastic medium. Inset: Forces acting on
the bevel tip, where P and Q are the resultant forces along the bevel edge.
qx and qy are the resultant forces along the bottom edge of the needle tip.

Fig. 9. The cohesive zone model used to simulate tissue cleavage process.
(a) A sketch depicting application of cohesive zone elements along the bulk
element boundaries, where tensile/compressive (normal) and shear strains
result in deformation and rupture of the cohesive elements. (b) Linear
traction-separation laws where values for Kn, Ks, Gc, and tc are obtained
from experiments and given in Table I.

is initiated, the cohesive zone elements open up in order
to simulate this behavior. All of the cohesive elements use
a traction-separation law (Figure 9(b)), which defines the
relationship between the vectorial tractions (force density
vectors), t, and strains, δδδ , across the element. The tractions
and strains are given by

tc = Knδnen +Ksδses, (14)

where Ks, Kn and δs, δn are stiffnesses and strains in the
shear and normal directions, respectively. The description of
the deformation and the traction evolution in these elements
is governed by a linear traction-separation law, as shown in
Figure 9(b). The damage evolution and subsequent cleavage
of the tissue is given by the rupture toughness, Gc. In order to
define the traction-separation law, inputs to the FE simulation
model are: Kn, Ks, tc, and Gc. We assume the stiffness in the
normal and shear directions are the same and given by the
elastic modulus of the tissue, as provided in Table I, i.e.
Kn = Ks = Etissue. Gc values are also provided in Table I. For
unit original constitutive thickness of the cohesive element,
δc is taken to be the same order of magnitude as the diameter
of the needle i.e. δc = 0.71 mm, so for Gc being the area
of the shaded region (Figure 9(b)), tc = 2Gc

δc
. The frictionless
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Fig. 10. FE simulation setup used to model needle and tissue interaction
for a needle with 55◦ bevel angle and 0.71 mm diameter. The needle tip
was made of nitinol (E = 50 GPa, ν = 0.3). (a) The green border used to
signify contact surfaces and the elements in red are assigned to be the
cohesive zone. (b) Magnitude of nodal displacement contour plot for the
needle tip penetrating the tissue.

contact surfaces and the cohesive zone are highlighted in
Figure 10(a) with an applied displacement of 0.35 mm.

Figure 10(b) shows the contour of the magnitude of nodal
displacement in the vicinity of the needle tip and cohesive
zone. Also shown is the needle tip penetrating through the
tissue elements and the initiation of cleavage. The tissue rup-
ture process is simulated as the cohesive zone elements open
up, which in turn is governed by the traction-separation law.
The resultant tip forces in the axial and transverse directions
are given by Fx and Fy, respectively, where Fx = qx +P and
Fy = qy + Q. Figure 11 shows the variation in Fx and Fy as
the rupture toughness, Gc, and the material elasticity, C10,
changes for the different tested materials. Gc and C10 varied
from 24.22 kN

m to 114.4 kN
m i.e. 372.3% change, and 3.57 kPa

to 4.93 kPa, i.e. 38% change, respectively. This resulted in
a 38% (0.44 N to 0.61 N) and 260.2% (0.11 N to 0.39 N)

variation in Fx and Fy, respectively. Also, as seen in Figure
11, changes in tip forces are dominated by the variations in
Gc, and not C10. The overall bending of the needle is due
to a combination of forces along the needle shaft and at the
tip. The results of this study indicate that the tip forces are
primarily governed by the rupture toughness. But in order to
predict the path the needle will follow, the structural stiffness
of the needle shaft needs to be included in the model.

B. Sensitivity to Needle Tip Bevel Angle and Tissue Elasticity

In addition to studying the effect of rupture toughness, FE
calculations were also performed to assess the effect of bevel
angle and tissue elasticity. Figure 12 shows the simulation
setup with boundary conditions and input displacement. Also
shown is an example FE mesh used for the study. The
associated elements used in this study are a combination
of quadrilateral (ABAQUS element CPE8) and triangular
(ABAQUS element CPE6 and CPE6M) elements. Unlike
the study presented in Section IV-A in which contact was
simulated between the needle tip and the elastic medium,
here we model the tissue and needle tip as one body but
assign different material properties to signify the needle and
tissue.

To study the effect of bevel angle, α was varied from
10◦ to 80◦, while the tissue Young’s modulus and Poisson’s
ratio were kept constant at Etissue = 25 kPa and νtissue = 0.45,
respectively. In order to study the sensitivity of tip forces to
tissue elasticity, Etissue was varied from 10 kPa to 35 kPa with
νtissue = 0.45 and α = 45◦. It should be noted that a variation
in bevel angle entails changing the geometry of the model,
and requries re-meshing the model, unlike the cases in which
the elastic property of the tissue is changed. For all studies,
needle tip Young’s modulus and Poisson’s ratio were set to
E = 2× 1011 Pa and ν = 0.3, and the needle diameter was
2 mm with applied displacement of 0.5 mm. Also, though
the constitutive behavior of the elements is linear, geometric
nonlinearity of the elements has been incorporated. Figure
13(a) provides the variation of the needle tip forces in the
axial (P, qx) and transverse (Q, qy) directions as bevel angle
is changed. qx decreases in a nonlinear manner with increase
in bevel angle, while P decreases to a minimum value at
approximately 35◦ and then begins to rise for increase in
bevel angle. It is seen that Q monotonically decreases with
increase in bevel angle, while qy monotonically increases
(decreases in the opposite direction) with increase in bevel
angle. The trends observed for qx, qy, and Q could be
explained as follows: With the increase in bevel angle, for
constant needle diameter, the length of the bevel and bottom
edges decrease and hence the sum of the nodal forces along
these edges also decrease. In Figure 13(b), Q and qy linearly
increase and decrease (increases in the negative direction)
with increase in tissue elasticity, respectively. Also, P and qx
increase linearly with increase in tissue elasticity. The trend
followed by the tip forces could be explained as follows:
With the increase in Young’s modulus (linear elasticity), the
tissue resistance increases and thus, the tip forces linearly
increase for the same input displacement of 0.5 mm.
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(a) Forces in the axial (x) direction. (b) Forces in the transverse (y) direction.

Fig. 11. FE simulation results for needle tip forces with variation in nonlinear material elasticity and rupture toughness.

Fig. 12. (a) FE simulation model for performing tip force versus bevel
angle and tissue elasticity sensitivity studies. (b) Example FE mesh for a 20◦
bevel angle where the elements within the red border have been assigned
needle material properties.

V. CONCLUSIONS AND FUTURE WORK

This study determined bevel-tip needle and tissue interac-
tion forces using FE simulations. We demonstrated a tech-
nique to extract physically relevant tissue properties (tissue
rupture toughness and nonlinear elasticity) and incorporated
them into a FE simulation model in order to simulate the
tissue cleavage process.

Tissue properties for several materials were measured
experimentally and the sensitivity of the needle tip forces

to these parameters were shown using FE simulations. The
needle tip forces were observed to be sensitive to the
rupture toughness. A 38% variation in nonlinear material
elasticity did not produce significant changes in tip forces.
For most applications, in which the needle would be steered
through soft tissue, large variations in tissue elasticity are not
expected. Further, sensitivity of needle tip forces to changes
in the bevel angle were also studied through FE simulations.
In general, smaller bevel angles resulted in larger axial and
transverse tip forces. Possible extentions to this work include
refining the toughness experiments and performing simula-
tions with contact and cohesive zone models for various bevel
angles. Also, including the needle shaft within the simulation
model is essential to predict the needle curvature. Further,
the validation of such FE simulation models which include
the complete needle-tissue interaction, both along the needle
shaft and also at the bevel tip, is integral for planning needle
insertion procedures. Validation studies need to be done with
independent experimental data, where comparison metrics
might include needle insertion forces, tip deflection, or radius
of curvature. Currently there only exists a kinematic model
that predicts the needle deflection for a user-defined position
input [21]. The parameters of this kinematic model must
be determined experimentally and are not related to needle
geometry or material properties. One of the primary goals
within the domain of robotically steered bevel-tip needles is
to have an analytical and/or simulation model that would
take inputs as the tissue and needle material properties,
and needle geometry, and predict the interaction forces and
deflection of the needle. Our future work is to develop such
a model to estimate the bending needed to robotically steer
needles through tissue and also, to choose feasible clinical
applications and optimize needle design.
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