
In: Human-Robot Interactions  ISBN: 978-1-63463-735-0 
Editor: Diana Coleman © 2015 Nova Science Publishers, Inc. 

 
 
 
 
 
 

Chapter 1 
 
 
 

EFFECTS  OF  FEEDBACK  MAPPING  ON  
HUMAN  CONTROL  OF  ROBOTIC  SYSTEMS 
IN  INDIVIDUAL  AND  COOPERATIVE  TASKS 

 
 

Lisa Jo Elliott, PhD1,, Stephen B. Hottman, PhD2,†, 
William L. Christian1,‡ and Kyle B. Reed, PhD1,§ 

1University of South Florida, Tampa, FL, US 
2New Mexico State University, Las Cruces, NM, US 

 
 

ABSTRACT 
 

In this chapter, we discuss how humans learn to interact with robots 
with different types of feedback. Specifically, we examine human-robot 
interaction during reversed control situations and how two humans can 
jointly control a single robot. In learning to work with unmanned aerial 
systems, endoscopic surgery tools, or industrial robots, one of the many 
challenges to humans is mapping the secondary control rapidly and 
accurately. Three of the studies included in this chapter extend what is 
currently known about cooperative human-human robot control and 
individual human-robot control. We focus on control of a randomly 
moving object, cooperative dyads working via separate master robots to 
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cooperatively control a single robot, and humans having her/his own pair 
of robotic arms attached to opposite sides of an object when doing a 
cooperative task. Depending on the interaction and the number of humans 
in control, the controls can have a one-to-one correspondence, be partially 
reversed (remotely controlled plane flying toward the operator) or have 
the fulcrum effect where all motions are reversed. The combined 
discussion of these research areas reveals the effect of different types of 
feedback and suggests extensions of current methods for testing feedback 
conditions with respect to theory in engineering and human factors. This 
chapter also discusses how the forces are affected, how humans are able 
to mediate their interactions through a haptic device, and how 
performance time is affected. The results of these studies help inform 
how humans use feedback to adapt to the controls required in many types 
of robot systems and add additional information on human limitations 
during adaptation and learning. 
 

Keywords: Human-robot interaction, controls, fulcrum effect, control 
reversal, haptic, cognitive mapping 
 
 

INTRODUCTION 
 
Human users and robots are increasingly interacting and working 

cooperatively. To make the interaction more effective, the human must be able 
to perceive the robot's actions, manipulate the controls, interpret the robot's 
actions, interpret the control information and make decisions on what to do 
next. These interactions are partially mediated by a person’s ability to 
internally represent the actions of a nearby person (and presumably a robot) 
when working on a complementary action (Sebanz, Knoblich, and Prinz, 
2003). Each robot differs in its controls, actions, and feedback provided to the 
human operator, which requires different actions to be completed by each 
member of the team. 

According to Wolpert, Diedrichsen, and Flanagan (2011) each 
sensorimotor task relies on several individual components that include: task 
relevant sensory information, judgment and decision making, strategy 
selection in predicting the next action, and reacting to errors in action. 
Sensorimotor judgment in humans is less prone to cognitive biases as the 
human determines what feedback to use, when to make the next movement, 
what movement should be made and how to compensate for errors during the 
control of a robot. Two people (a dyad) can conduct optimal operation of a 
single robot sooner than a single human (Burstedt, Edin, and Johansson, 1997; 
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Reed, Peshkin, Hartmann, Grabowecky, Patton, and Vishton, 2006; Braun, 
Ortega, and Wolpert, 2009). 

One of the reasons for increased cooperation in dyads lies in the operation 
of the human sensorimotor system. The human's sensorimotor learning and 
cooperation rely on the human musculoskeletal system (MSS) and the way in 
which it anticipates control. Wolpert et al. (2011) suggest that there are three 
ways in which humans optimize MSS control and achieve optimal MSS 
performance: predictive control, reactive control and biomechanical control. 
Predictive control is observable as humans anticipate the amount of strength 
and force needed to move an object or manipulate a control. Reactive control 
addresses the correction of movement error. Biomechanical control includes 
the structure of the human musculoskeletal system. The feedback 
interpretation and judgment is further refined to apply only to the current task 
and the intervention necessary to accomplish the intended goal. 

In addition to the feedback provided by the robot, the human's 
musculoskeletal system (MSS) also interacts with the robot. Several models of 
how the MSS processes feedback exist in the literature. Grush (2004) suggests 
three models: (1) Feed forward; (2) Feedback control (Desmurget and Grafton, 
2000); (3) Forward/emulator (Kawato, 1999; Wolpert, Ghahramani, and 
Flanagan, 2001). In both the feed forward model and feedback control theory, 
the human control process of the MSS breaks down into two components: 
(1) forward mapping and (2) an inverse mapping. The forward mapping 
estimates the MSS configuration from the current state to the future state that 
will result when the motor movements have been accomplished. Inverse 
mapping takes the future state and determines the motor movements required 
to attain that state. In the feed forward model and the feedback control model, 
the time in which the motor plan is developed defines the models. 

In the feed forward model, the entire plan is determined before movement 
begins. In the feedback control model, the plan emerges as the action happens 
(Desmurget and Grafton, 2000). 

The third model, the forward emulator model, considers the movement 
plan in terms of an emulator which can produce a copy of the feedback signal 
and produces preliminary plans (Kawato, 1999;Wolpert et al., 2001). In this 
model, the MSS dynamics are emulated and refined through a continuous 
stream of feedback (Desmurget and Grafton, 2000; Wolpert, Ghahramani, and 
Jordan, 1995). The emulator system must be able to monitor the input/output 
signal and compensate for changes in the physical system such as pregnancy, 
limb growth, and aging. 
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Within   the   forward   emulator   model’s   system   is   a   Kalman   Filter   that  
processes noise (unpredictable external) and driving force (predictable 
external) to create an optimal estimate of the real state of the MSS without 
noise. The Kalman Filter can estimate gain (how much the prediction deviates 
from real over time), measurement update (how much the prediction deviates 
from the real in a single or series of instances), and when the sensors are 
expected to be unreliable and when the signal will be more accurate than the 
estimation. Wolpert et al. (1995) measured human estimates of the position of 
their own hands after movements of varying lengths without visual feedback 
and during three types of external force: assistive, resistive, and no force. The 
patterns of over-estimation increased in each participant until one second 
elapsed and then decreased. This is taken as support for the idea of a Kalman 
filter to stabilize MSS approximations (Blakemore, Goodbody, and Wolpert, 
1998; Kawato, 1999; Wolpert, Ghahramani, and Flanagan, 2001; Krakauer, 
Ghilardi, and Ghez, 1999; Houk, Singh, Fischer, and Barto, 1990; Mehta and 
Schaal, 2002). 

Extensions to all three models (the feed forward model, the feedback 
control theory, and the forward emulator model) by Slaughter (2004) advance 
the previous abstract model of the body schema originally discussed in Poeck 
and Orgass (1971). Body schema refers to how humans perceive their body 
and was the abstract model for the MSS. The emulator idea discussed is a 
significant departure from the body schema theory as it incorporates a 
cognitive structure that represents the body as it moves and acts within the 
environment. These models contribute to our understanding of the MSS in 
humans and why the human MSS complicates the control of robots. 

Understanding joint control has implications beyond benefits to shared 
control. Sebanz et al. (2006) state in a review of coordinated interaction that 
studying humans working individually may not fully reveal how they 
fundamentally operate. Much like the behavior of ants that shows five ants can 
carry significantly more than five times what one ant can carry (Moffett, 
1992), cooperative behavior between humans and robots has the potential to 
generate great benefits by using the best abilities of the human and the robot. 

The remainder of this chapter will focus on studies that explore two 
different sides of human robot cooperation related to the above literature: 
haptic mapping and cognitive mapping. In the first two experiments on haptic 
mapping, two humans worked in a team task in which they had to 
cooperatively control a single robot and a bimanual planar task in which each 
person had her/his own pair of robotic arms attached to opposite sides of the 
object while looking at the same view. 
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In the third experiment focusing on cognitive mapping, different 
participants used a joystick to control an icon of a plane on a computer screen 
as the X coordinates of a joystick control changed in relation to the plane icon 
that it was controlling. Both the haptic mapping and the cognitive mapping 
experiments help inform how humans use feedback to adapt to the controls 
required in many types of robot systems. 

This chapter will be separated into two main topics: haptic and cognitive 
mapping. After a brief discussion of the salient literature for each, we will 
discuss the three experiments that were conducted and how the results 
contribute to our understanding of haptic and cognitive mapping. 

 
 

HAPTIC MAPPING 
 
Interacting with a robot is very different than interacting with another 

human because of the limitations of feedback available to the human when 
learning to control the robot. Research has examined the most suitable human 
characteristics that allow for cooperative work between two humans. This 
literature demonstrates that two humans are faster when working together 
(Reed, 2012), human groups can temporally specialize their motions 
(Rizzolatti, Fogassi, and Gallese, 2001; Reed and Peshkin, 2008; Ueha, Pham, 
Hirai, and Miyazaki, 2009), the two members will typically exert a small force 
against the other person (Reed, Peshkin, Hartmann, Colgate, and Patton, 
2005), and the coupling stiffness affects the performance of the interaction 
(McAmis and Reed, 2013). This interaction has then been used to design 
robots that are capable of smooth, human-like movements (Bakar, Yuichiro, 
Ikeura, and Mizutani, 2006; Feth, Groten, Peer, Hirche, and Buss, 2009) and 
robots that naturally assist the human (Corteville, Aertbelien, Bruyninckx, 
Schutter, and Brussel, 2007). However, the quality and the type of feedback a 
robot must give a human in order to inspire human-robot interaction is not yet 
known. 

When humans provide feedback to one another, two people can interact by 
speaking, changing facial expressions or body posture, shaking hands or 
hugging, and through the written word. Initially, it was thought that the role 
that the human plays in the interaction was the critical portion. In some two-
member teams, the two members divide the roles into an executer and a 
conductor (Evrard and Kheddar, 2009; Stefanov, Peer, and Buss, 2009). The 
role of the executer is primarily contributing to the execution of the task, while 
the role of the conductor is to make decisions and to control the motion. 
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In a human-robot team, the human user is typically the conductor and the 
robot is typically the executer. However, when more than one conductor is 
using a robot or when the conductor does not make clear and decisive 
movements, the executer is unsure of which action to take. This happens often 
when groups cooperate on a physical task, such as moving a large object 
(Lacquaniti and Maioli, 1992; Karniel, Meir, and Inbar, 1999). One example is 
the design of the flight controls in airplane cockpits; in some flight controllers, 
the command given to the airplane control surfaces is the result of the average 
position from the two  pilots’   flight  controls   (Summers, Shannon, White, and 
Shiner, 1987). Averaging is a simple strategy, but not necessarily the best 
combination. Each pilot can perform independently with only a partial control 
of the resulting motion. A better solution likely consists of a strategy that can 
exploit the redundant abilities of the group (Knoblich and Jordon, 2003). In a 
study with relatively simple dynamics, Glynn, Fekieta, and Henning (2001) 
examined several methods of combining the forces from two members of a 
dyad cooperatively moving a cursor through a virtual maze. During force 
control, the added force feedback increased errors while the added feedback 
decreased errors during position control. With two people directly interacting, 
they are able to communicate both on position and force, thus there should be 
no detrimental interaction like there was in the force control experiment. They 
also showed that using the average of the commands without haptic interaction 
resulted in faster and more accurate task execution than one person alone. 

 
 

EXPERIMENT 1 – BIMANUAL COOPERATIVE INTERACTION 
 
Individuals frequently interact through touch when cooperatively moving 

or exchanging objects, much of it done without dropping the object. In many 
of the previous studies on physical interactions, both partners are given the 
same view in relation to their controls when performing the task. In this 
experiment, we examine the interaction that occurs when one participant has a 
control reversal and the other participant does not. 

 
 

Experimental Setup 
 
We used a set of four Phantom Omnis (Geomagic) that can provide fast 

and accurate force feedback, allowing them to easily render complex virtual 
objects and environments. Figure 1 shows the complete experimental setup. 
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Figure 1. The complete experimental setup during the experiments. In this photo, the 
practice simulation has just begun, and all four haptic devices are activated and are 
seen hovering above the table as they are in fact resting on the floor of the virtual 
environment. 

 

Figure 2. The box interaction in progress. This experiment measures the ability of two 
human participants to work together in a virtual environment through a robotic device. 

The Omnis were attached to the table using double-sided tape so that they 
would not slide around during the experiments. Throughout these experiments, 
the Omnis had to be calibrated often since three and four Omnis in series is not 
a supported configuration. 

The Omnis could become uncalibrated after as little as ten minutes, 
causing jerky motions and poor force feedback. 

By calibrating every five minutes, there were very few calibration errors 
during the experiments themselves. To calibrate them, the experiment was 
paused, the Omnis recalibrated, and then resumed starting at the same point 
where it was interrupted. 



Lisa Jo Elliott, Steven B. Hottman, William L. Christian et al. 8 

The visual feedback included the virtual box in which the Omnis were 
virtually   attached   to   using   virtual   springs   and   dampers.   One   participant’s  
circles representing the two Omnis were colored green and the participant’s  
circles representing the other two Omnis were colored blue. Each participant 
held one Omni stylus in each hand. Figure 2 illustrates the Box Interaction 
Experiment interface (coordinate system not shown during the experiment). 

The two participants intentionally shared a single display so that each 
participant would have a different view relative to their virtual handle position. 
In the case of the participant represented by the blue circles, the view would 
start without control reversal, whereas the other participant, represented by the 
green circles, would start out with control reversal in the left/right and rotation 
directions. 

 
 

Participants 
 
Twenty individuals (fourteen men; six women) participated in these 

experiments. Ten of the participants had worked with a robotic device of some 
kind before, while the other ten had not. 

This study was IRB approved and each participant signed an informed 
consent form prior to the experiments being conducted. 

 
 

Practice Environments 
 
There were a total of three parts to the first experiment: first were two 

simple   “practice”   environments in which the participants were introduced to 
the Omnis, force feedback, virtual object interaction, and the Box Interaction 
Experiment. 

The participants first interacted with two simulations to reduce learning 
effects and familiarize them with virtual environments and force feedback. 
The first virtual environment was the outside of a virtual cube and the second 
was a simulation of moving spheres in a virtual haptic interaction simulation. 

Many of the participants had never used an Omni before, so this practice 
helped to introduce the participants to the virtual environment before the 
experiments started. 

The practice interactions lasted no more than five minutes. 
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Procedure 
 
The objective explained to the participants was to jointly move a virtual 

box into a set of ten target boxes. All of the trials required translational and 
rotational motion of the box. The simulation began with the box positioned in 
the  center  of  the  Omnis’  workspaces,  and  the  first  target  box  was  in  the  upper  
right hand corner. There were four directions in which the box could move: 
left and right, up and down, forward and backward, and rotation about the 
vertical axis. Rotations about the other two axes were left out because this 
research focused primarily on planar motions. 

In order to reach the target box, the participants had to position the virtual 
box within 20 millimeters from the target with an offset angle of no more than 
30°. In setting up the experiment, it was found that these constraints set a 
moderate difficulty level on the experiment. 

Any stricter, and some of the dyads may not have been able to complete 
the simulation. Any more lenient, and the dyads would have reached most of 
the targets far too quickly to analyze their level of cooperation. 

Once the first box was reached, the second appeared, and once it was 
reached, the third appeared, and so on, until all ten target boxes had been 
reached. Each box rotated 90° from the orientation of the previous box, 
ensuring that the participants had to apply both forces and torques to the box in 
order to reach the next target. Torques could only be applied by generating a 
moment from two inputs as the torques could not be directly applied with only 
one hand. Once all ten target boxes had been reached, the simulation was 
complete. The participants then completed the entire simulation a second time 
after a three-minute break. 

 
 

Acquiring the Target 
 
The target box was acquired when both the angle and distance were close 

enough. In this experiment, the required distance was 20 mm and the required 
angle was 30°. These choices were chosen by what felt like a good balance 
between the difficulty of each requirement, but this choice is semi-arbitrary. 
There are no studies that quantify a relationship between the difficulty of a 
rotational task compared to the difficulty of a related translational task, 
particularly in the realm of cooperative motion; we leave this for future work. 
However,   one   study   has   used   Fitts’   Law   to   compare   the   motions   of   a  
translational task to the motions of a combined rotational and translational task 
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for individuals (Stoelen and Akin, 2010). Using our values of 20 mm and 30°, 
the distance was found to be the leading constraint in reaching the target box 
in 82% of the trials; the offset angle was rarely the leading constraint. 

There is no statistically significant difference between the offset distances 
in the first and second simulation. Due to the distance constraint being reached 
most often, the average angle when the target was acquired was 15.3° with a 
standard deviation of 4.2°. 

 
 

Force Analysis 
 
The positions were recorded at 1,000 Hz and the graphics were updated at 

60 Hz. The forces were calculated based on the distance of the measured Omni 
position and the position of the corner on the virtual box times a spring 
constant of 200 N/m. This is the force that each participant felt during the 
interaction and the force that was used to calculate the translational and 
rotational dynamics of the box. 

 
 

Preferred Locations 
 
The setup imposed no specific requirement on how the participants 

acquire the targets – the box and setup was symmetric. However, the 
participants preferred to stay in the same relative locations in the virtual world 
when returning to targets with the long axis into the screen. The individual that 
started out without control reversal maintained the straightforward control and 
the other partner maintained a control reversal position throughout the 
experiment in all cases. This persisted throughout the first and second rounds 
for all participants. There was no statistically significant difference on the 
direction of rotation between targets. 

 
 

Redundancies 
 
When two people cooperate on a task, there are many new force 

combinations available in which they can perform the task than an individual 
has available (Lacquaniti and Maioli 1992; Karniel et al., 1999). In this planar 
task, there are eight force inputs: four in the X and Z directions from each 
person. 
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However, the motion of the box only has three directions: X, Z, and a 
rotation. The box could also move up and down in the Y direction, but our 
analysis focused on the planar motions only, so the Y motion was excluded. At 
a high level, forces can be divided into bimanual forces, those that occur 
within the individual, and cooperative forces, those that occur between the 
individuals. If it is assumed that there could only be two forces present at a 
time, there are 16 possible force combinations as shown in Figure 3. There are 
many more combinations when three or more forces are involved. 

The majority of these combinations are cooperative, or joint forces, which 
require both individuals to generate half the force. Note that an X direction 
motion cannot be created with only two forces from one individual without 
also rotating the box, but can when combined with an opposite direction 
torque. Obviously the individuals will use more than two forces, but this is a 
reasonable simplification for an example of the complexity involved in 
analyzing the forces during this task. 

To reduce the interactions to an understandable level, we analyzed the 
eight forces using a principle components analysis in two reference frames. 
The forces from each individual can be analyzed in the world frame or in the 
movable frame of the box, as shown in Figure 4. 

 

 

Figure 3. An example of the 16 redundant combinations that four forces from two 
people can create. Higher numbers of input forces leads to many more redundant 
combinations. These forces can be divided into bimanual forces/torques, which are 
those that arise from only one person, and joint forces/torques, which are those that 
arise from the interaction of the two individuals. 
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Figure 4. Two reference frames are used to analyze the planar interaction forces. One 
is the world frame, which is the view of the computer monitor and of the Omnis. The 
second is the boxframe, which is the moving frame attached to the box, indicated by X' 
and Z'. AL, AR, BL, and BR correspond to the left and right hands of members A and B, 
respectively. 

The boxframe forces are the forces that the participants exerted on the 
Omni that were transformed into the moving reference frame of the box. This 
moving boxframe was determined by calculating the relative position of the 
box in box coordinates from the absolute position in world coordinates. The 
relative position was calculated by multiplying the world coordinates by the 
appropriate sine or cosine of the box angle. The principle components analysis 
is conducted on both of these frames for comparison. 

 
 

Principle Components Analysis 
 
The fundamental combinations of forces employed by the dyad can be 

examined by looking at the principle components of the forces from each 
individual. A principle components analysis (PCA) allows the eight forces 
(i.e., X and Z from all four hands) to be transformed into a new set of axes that 
are ordered in terms of the variance they represent. The first axis accounts for 
the most variance possible and each subsequent axis is orthogonal and 
represents the degrees of variance in the original data in descending order. 
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By analyzing the interaction forces with a PCA, one can quickly 
determine the type of interaction. PCA is frequently used in image 
compression as a means of quantifying the image and has also been used to 
quantify walking patterns (Huang, Harris, and Nixon, 1999). Here, we are 
doing the same, but with forces instead of pixels. Figures 5 and 6 show the 
correlations of the eight forces from each hand of each member in the X and Z 
directions. The darkness of each square represents the weighted average based 
on the force vector magnitude in a given direction multiplied by the percentage 
of variance explained by that vector. The 64 correlations, , are determined 
by 

 

 (1) 
 

where i and j - indices over the eight forces, 
p is an 8 by 8 matrix where the columns are the vectors of the principle 

components 
ln represents the amount of variability explained by the nth principle 

component 
pi,n and pj,n are the values of the nth principle component in the ith or jth 

direction. 
The absolute value is taken to measure the correlation between the 

magnitude of the two values since we are not concerned with the sign of the 
relationship. Note that the red squares on the diagonal represent the self-
correlated forces, which would necessarily be perfect, so those are ignored. 

Although there are many interactions shown in Figures 5 and 6, several 
interactions are quickly apparent. Each quadrant of sixteen squares represents 
either an interaction within the individuals or between the individuals. The top 
right and bottom left are within individuals (bimanual) and the top left and 
bottom right are between individuals (joint forces/torques). 

It is quickly apparent from the figures that much of the forces in the world 
frame are in the forward backward (Z) direction and are mostly bimanual 
motions. Bimanual motions can be coordinated in many different patterns 
(Swinnen and Wenderoth, 2004; Malabet, Robles, and Reed, 2010; McAmis 
and Reed, 2011) and incongruent bimanual feedback can have a detrimental 
impact on performance (Cooper, Wernke, and Reed, 2012). The large amount 
of Z direction motion is likely caused by the difficultly of determining the Z 
direction depth based on a 2D monitor display, whereas the X and Y direction 
motions can be easily determined. 

of variance explained by that vector. The 64 correlations, , are determined 
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Figure 5. A principle components analysis performed in the world frame. Most of the 
interaction in the world frame occurs in the bimanual mode and, in particular, in the 
forward/backward Z direction. Very little interaction occurs between the two members 
of the dyad. 

Previous research indicates that the position of the monitors can have a 
significant effect on the performance of teleoperation (DeJong et al., 2006), 
partially due to the control reversal issue. In a dyadic interaction, giving each 
member a different view of the system could increase the performance of the 
system, particularly if the handle arrangement was different. For example, if 
one member was aligned perpendicular to the other, then one of the members 
could focus on the Z motions and the other on the X motions. In the interaction 
here, the available forces were the same, only the relative view was different, 
which does not give any additional benefit to performing the task. 

We compared the forces generated by the individuals on the control 
reversal side and the non-control reversal side and found no significant 
difference. 
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Figure 6. A principle components analysis performed in the moving box frame. 
Significantly more of the interaction can be seen between the two members of the 
dyad. This indicates a cooperation and/or negotiation that is done in this reference 
frame. 

We expected some difference in the motions due to control reversal of one 
member of the dyad, but the participants apparently learned how to perform 
the task within either of the viewpoints and continued that interaction 
throughout. Thus, for the comparisons, we combined all twenty participants so 
that the forces shown are symmetric. Thus, the correlations are a 
representation of how similar the directions of the components are. 

There are noticeable differences between the world frame and the moving 
box frame. Significantly more of the interaction is occurring between the two 
members in the moving box frame. The percentage of the cooperative 
interaction that occurs in the box frame is 31.5%, whereas the cooperative 
interaction is 16.5% of the motion in the world frame. These values are 
statistically significantly different (p (199) < .001). 

This suggests that nearly one-third of the motions involved in moving the 
box are occurring cooperatively between the individuals. 
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EXPERIMENT 2 – COOPERATIVE 
MANIPULATION OF A SINGLE MANIPULATOR 

 
In contrast to interacting through a single object, this experiment aimed to 

understand how to combine teleoperation interfaces for two humans working 
cooperatively to control a single manipulandum. Such a task is commonly 
done with flying an airplane (copilot and pilot), when training individuals to 
use machines, and during some teleoperation tasks. 

Unlike the box interaction experiment, the individuals tested here have the 
same relative force inputs and view of the procedure. 

The aim of this experiment is to examine different methods to mediate the 
interaction between the two individuals. 

This   experiment  was   performed   in   the   context   of   analyzing   a  material’s  
properties, but the main goal was to examine the cooperative behaviors of the 
two individuals. 

 
 

Setup 
 
The setup was similar to that shown in Figure 1, but only three Omnis 

were used. Participants each controlled one Omni with their dominant hand, 
while the third Omni was the slave robot, which interacted with the material to 
be tested. The participants had   to  work   together   to   determine   the  material’s  
hardness, which was calculated based on the deflection and forces applied by 
the third Omni. 

A force was applied to each participant based on the position of the slave 
and the two masters. The third Omni position and velocity were controlled by 
one of three controllers based on the position and velocity of the first and 
second Omni. The participants worked with three different force feedback 
modes, which were System Force Feedback, Social Force Feedback, and Dual 
Force Feedback. These three interaction modes are demonstrated in Figure 7. 

In the System Force Feedback mode, the user feels a force proportional to 
the difference between his position and the position of the slave robot. This 
has the advantage that the participant can feel the stiffness of an object the 
slave robot is interacting with in a position-exchange feedback mode, but has 
the disadvantage that it is difficult to distinguish whether the participants are 
fighting with each other or if the slave robot is restricted by interacting with a 
material. 
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Figure 7. The three force feedback modes used in this cooperative interaction 
experiment. Each mode controls the slave to be the average of the two master robots. 
System Force Feedback is based on the individual position of each master. Social 
Force Feedback is based on the difference of the two master positions. Dual Force 
Feedback provides the same feedback to each user based on the average position of the 
two masters. 

In the Social Force Feedback mode, the user feels a force proportional to 
the difference between his position and the position of his partner. This has the 
advantage that the participants are less likely to fight with each other since 
they feel a resistive force if they do. However, it has the disadvantage that the 
participants are unable to feel any restrictions of the slave robot, so they 
cannot feel the material they are interacting with. This is beneficial for training 
purposes when position information is most important. 

In the Dual Force Feedback mode, both users feel the same force, 
proportional to the difference between the average position of the two master 
robots and the position of the slave robot. This has the advantage that both 
participants feel the exact same force. 

However, it has the disadvantage that it is nearly impossible to distinguish 
whether you are fighting with your partner or if the slave robot is restricted. 

Furthermore, if the participants are fighting with each other, the force 
feedback will not easily guide them back into equilibrium. 
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Therefore, this mode is the most likely to cause significant fighting 
between the two participants, but allows identical forces to be felt by each 
user, which could be beneficial during teaching/learning tasks. 

 
 

Participants 
 
The same twenty participants performed this study as the box interaction 

experiment during the same session. This materials experiment was always 
performed after the practice and box experiments, described above. 

 
 

Materials Analysis 
 
The hardness of a material is an easily obtainable, yet fundamental 

property. There are many hardness testers out there that are more suited to the 
task  of  finding  a  material’s  hardness  than  the  Phantom  Omni,  yet  they  do  not  
have the haptic interaction between the user and the device, nor do they allow 
two participants to cooperate in a human-robot interaction when performing 
the experiments. One limitation of the Phantom Omnis is that they are only 
able to perform these experiments on softer materials. Soft materials require a 
smaller force to deform by a measurable amount, and many robots are unable 
to deliver larger amounts of force, such as the Omni. Due to the limited force, 
it was observed that the harder the material, the less accurate the results and 
the more common repeat hardness measurements became due to the Omni 
slipping on the hard surface. Five materials ranging in hardness (soft foam, 
styrofoam, cardboard, soft wood, and aluminum) were used to test how the 
two participants interacted when trying to identify the hardness of a material. 
The three softest materials did not suffer from this issue as much as the two 
hardest materials. 

 
 

Procedure 
 
The participants were told to identify the materials based on the stiffness 

felt when interacting with it. The participants were not permitted to touch the 
materials directly or interact with them in any way except working 
cooperatively through the three Omnis. The materials were all painted black 
and placed inside of a black box approximately one meter away from the 
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participants so that their composition was not revealed. Participants were 
allowed to touch the material through the Omni up to five times before they 
were asked to identify the material. The three interaction modes were each 
tested two times for each material. The interaction modes and materials were 
all displayed in a random order to the participants. 

 
 

Comparing Performance in Calculating Hardness 
 
Some of the materials were more difficult to identify than others. This was 

partly due to the materials themselves, and partly due to the participants being 
more familiar with some of them than others. The material which was the 
easiest to identify was aluminum, and the most difficult to identify was soft 
wood. Of the 20 participants who participated, 18 correctly identified 
aluminum, 17 correctly identified soft foam, 14 correctly identified styrofoam, 
11 correctly identified cardboard, and 7 correctly identified soft wood. 

Only three of the twenty participants were able to correctly identify all 
five materials. 

 
 

Dyad Cooperation Results 
 
When analyzing the Materials Analysis Experiment, we used the fighting 

distance and fighting velocity for each of the three Cartesian directions to 
quantify the interaction of the individuals, shown in Figures 8 and 9. The 
fighting distance is Fd = mean(abs(X1 – X2)) where X1 and X2 are the positions 
throughout the trial and all differences are averaged together. A larger fighting 
distance indicates that the participants were not cooperating in performing the 
hardness test. The fighting velocity is Fv = mean(abs(V1 – V2)) where V1 and 
V2 are the positions throughout the trial and all differences are averaged 
together. A larger fighting velocity indicates that the participants were moving 
in different directions or with different velocities and that the participants were 
not cooperating.  Note  that   in  the  Omni’s  workspace,   the  x-direction refers to 
the left-right direction, the y-direction refers to the up-down direction, and the 
z-direction refers to the forward-backward direction. 

There was no statistically significant difference for fighting distance 
(F(4,432) = 0.53) or velocity (F(4,432) = 0.42) between the five materials 
themselves. 
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This indicates that the material hardness itself does not have an impact on 
the fighting distance or velocity; many of the motions were similar between 
the different materials, so this is not surprising. 

There is a significant difference between the three directions for both 
distance (F(2,432) = 3.08, p < .05) and velocity (F(2,432) = 3.78, p < .05). 
Post-hoc tests with Bonferroni corrections show that both the fighting distance 
and velocity is statistically significantly smaller in the z and x directions than 
in the y-direction. There is no statistically significant difference between the 
fighting distance in the x and z-directions. As expected, vertical depth is a vital 
part of this task. There is a significant difference between the three force 
feedback modes, F(2,432) = 6.23, p < .005 for fighting distance, but not 
fighting velocity (F(2,432 = .77). Post-hoc tests with Bonferroni corrections 
show that Dual Force Feedback produced the most disagreement in position, 
and then System Force Feedback, and Social Force Feedback produced the 
least fighting. This is as expected since Dual Force Feedback does not provide 
any measure of the difference between the two users, it only provides a 
measure of the average interaction with the environment, which could lead to 
an improved agreement upon the interaction with the environment. 

 

 

Figure 8. The fighting distance between the participants per Cartesian direction in the 
Materials Analysis Experiment. The error bars represent one standard deviation from 
the mean. 
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Figure 9. The fighting velocity between the participants per Cartesian direction in the 
Materials Analysis Experiment. The error bars represent one standard deviation from 
the mean. 

On the other hand, Social Force Feedback provides a feedback directly 
related to the interaction of the two individuals. Each of these interaction 
methods has a benefit and tradeoff and could be used depending on the desired 
interaction and purpose of the interaction. 

The best way to reduce the fighting distance and fighting velocity is for 
the participants to get substantial practice working with robotic devices in 
experiments such as this one. 

Figures 8 and 9 illustrate the fighting distance and velocity between the 
participants per Cartesian direction in this experiment. 

 
 

Cognitive Mapping of Control 
 
Controls have long been a topic of concern in regard to robot system 

operation, both in terms of the dyadic interaction described above and in 
individual interactions with an interface. Initially, Fitts explored the motorized 
control of tools through dials and knobs and concluded that consistent 
mapping resulted in the best performance (Fitts and Seeger, 1953; Fitts and 
Deininger, 1954). 
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Consistent mapping means that the tool moves in the same direction as the 
control. Inconsistent mappings (the tool moves in a direction contrary to the 
control movement) were a source of significant error. As a result of Fitts’  and  
colleagues’   work,   design   guidelines have successfully urged a consistent 
control/tool mapping and the problems have decreased substantially. 

While there is a potential for many types of robotic systems with humans-
in-the-loop to have the control/tool mapping problem, endoscopic surgery 
systems and unmanned vehicle systems are two of the most often used systems 
to have this challenge. Endoscopic surgery robotics enable a surgeon to 
complete a procedure using several small incisions in the patient and inserting 
a camera and the endoscopic tools. As the surgeon moves a control downward, 
the  tool  moves  upward.  This  is  typically  referred  to  as  the  ‘fulcrum  problem’.  
In unmanned aircraft systems, a similar problem occurs and it is referred to as 
the  ‘control reversal problem’.  As  the  plane  flies  toward  the  operator,  the  plane  
moves inconsistent to the control mappings. A joystick move to the right 
produces a plane movement to the left. The number of performance errors due 
to the inconsistent mappings is significant in both areas. Adding multiple users 
to a control problem can exacerbate the problems since the direct mapping 
from action to result is diminished and can generate similar inconsistencies 
that inconsistently mapped controls can cause. 

Many computer users have been subjected to a control reversal in order to 
make   the   interaction   more   consistent   in   the   long   term.   In   Apple’s   OS   X  
Mountain Lion© upgrade, the default scroll direction was reversed. The change 
in direction makes the interaction consistent between scrolling on touchscreen 
devices and computers. Historically, scrolling would change the direction of 
the scrollbar position, so pulling the scroll wheel towards you would move the 
text up (scroll bar down). On a touchscreen device, swiping toward you would 
be expected to generate the opposite effect, that of moving the text down 
(scroll bar up). This change makes the interaction more consistent between 
Apple computers and touchscreen devices, but has caused a slight confusion 
with cognitively mapping the scroll direction when switching between 
computers with different implementations. 

Wolpert et al. (2011) discusses three types of learning: error based 
learning, reinforcement based learning and use dependent learning. According 
to Marr (1982) the learning processes may work together to produce human 
adaptation to the robotic controls. The types of learning are interdependent 
operating   within   the   MSS   independent   of   the   human’s   attention.   Thus,  
Wolpert and other researchers theorize the cognitive structure of an emulator. 
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In error based learning, the outcome of the sensorimotor system's actions 
are compared to the desired outcome. This comparison tells the sensorimotor 
and information processing system how, where, when, and why the intended 
outcome was or was not achieved. In addition to the goal achievement, the 
comparison provides information on error correction (Marr, 1982). 

It is thought that this comparison method is the basis for the sensorimotor 
adaptation (Krakauer, Ghilardi, and Ghez, 1999). Error based learning seems 
to drive adaptation regardless of the human's desire to adapt (Donchin, 
Francis, and Shadmehr, 2003; Diedrichsen, Hashambhoy, Rane, and 
Shadmehr, 2005; Srimal, Diedrichsen, Ryklin, and Curtis, 2008) and persists 
until the sensorimotor system cannot further optimize the movement. 

Reinforcement base learning also provides correction to the sensorimotor 
system through reinforcements (Wolpert et al., 2011). Little is currently 
known about the types of rewards, frequency needed and extinction of 
reinforcement based learning for the sensorimotor processes in humans. To 
date, studies have found that full reinforcement throughout an entire task 
creates human reliance  on  the  robotic  trainer  and  may  interfere  with  a  human’s  
internal motor learning (Schmidt and Wrisberg, 2008). More recent studies 
suggest that just-in-time reinforcement that gradually disappears is more 
successful and does not create reliance on the reinforcement (Crespo and 
Reinkensmeyer, 2008; Emken and Reinkensmeyer, 2005). 

In use dependent learning, the sensorimotor system adapts simply from 
repetition with the robot controls (Verstynen and Sabes, 2011). Wolpert, 
Diedrichsen, and Flanagan (2011) state that this type of learning can occur in 
parallel with error based learning. Use-dependent learning does not require 
that the system provide feedback to the human. The lack of feedback to the 
human defines use-dependent learning. Motor neurons may play a role in use-
dependent learning however, in all three types of learning, the human must 
experience the feedback and errors him or herself in order for the learning to 
occur (Wolpert et al., 2011). 

Thus, when the controls change how the robot moves, do humans adapt to 
the changed controls and how long does the learning take? In order to test only 
this portion, we created a simulated task on a desktop computer in which the 
human used a joystick to control a plane icon on a computer screen. The 
participants were to keep the plane icon within a slowly moving box. The 
joystick controlled the X coordinates (right and left) and the Y coordinates (up 
and down) coordinates. Depth controls were not used. During the experiment, 
the joystick's X coordinates reversed and participants had to adapt. 
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In the control reversals, a right motion of the joystick would produce a left 
motion of the plane. 

This task replicates the controls of a remotely piloted plane. When the 
plane approaches the operator either for landing or during the execution of a 
turn. It is very similar to the controls used by the MicroB manufactured by 
Bluebird Aero Systems (2009) or any small remotely piloted plane. 

During  the  experiment,  the  distance  between  the  plane’s  central  point  and  
the  box’s  central  point  was  calculated  and  recorded  every  0.10  seconds  and  the  
root mean square (RMS) was calculated. The experiment lasted 36 minutes 
with 6 trials. The X coordinates were normal (right = right; left = left) for trials 
one, three and five. The X coordinates were reversed (right = left; left = right) 
for trials two, four and six. 

 
 

Participants 
 
The study was approved by the institution's IRB. There were 141 

participants who volunteered either for course credit or for payment (74 men 
and 67 women). The age range was between 18 years old and 45 years old 
with a mean age of 19.47 years old and a standard deviation of 3.5 years. Less 
than five participants reported having any piloting or radio controlled aircraft 
experience. Of the 141 participants, 43 of them reported video game 
experience. Of these, 16 participants played first person shooter games (6 
women, 10 men) and 21 participants played sports, puzzle, music or other 
types of games (14 women, 7 men). 

 
 

RESULTS 
 
When comparing all six trials by the control mappings (normal or 

reversed), there was a significant difference (F(1, 53) = 6.879, p = 0.01). The 
reversed controls were more difficult for all participants. Overall, persons who 
did not play first person shooter games were the least successful in keeping the 
plane near the center of the box. However, the standard deviation was high for 
all groups and in some cases the standard deviation was higher than the mean. 

This indicates that some participants did very well across all of the trials 
and other participants struggled with the task. Participants reported that they 
found the experiment to be tedious and boring. Observations of the 
participants suggested that some participants were more attentive than others. 
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Table 1. Summary of RMS by participant groups 
 

 Mean RMS SD RMS 
Women (67) 54.61 56.70 
Men (74) 33.90 38.93 
Only First Person Shooter Gamers (16) 53.20 20.76 
Only Non-First Person Shooter Gamers (21) 77.43 36.08 

 
The participants’  performance  scores  were  segregated  ordinally  into  thirds  

by participant with the most efficient (low RMS) compared to each other and 
the least efficient (high RMS) compared. The most efficient participants 
improved by 20% after the first six minutes or the first trial. The least efficient 
participants improved by approximately 56% within the same time period. The 
learning effect was stronger in the least efficient participants despite the 
participants self-report that they were bored and had trouble paying attention. 

We were most interested in what would happen when the X coordinates of 
the joystick reversed. In the reversed trials (see the dark bars on Figure 10), 
participants performed significantly better when the first trials were compared 
to the last trials (t(704) = 8.48, p < 0.0001). In normal trials, participants also 
showed significant improvement (t(703) = 11.807, p < 0.0001). When 
subtracting the last RMS distance from the first RMS distance within each 
trial, participants improved by an average of 35 RMS. In both the normal and 
the reversed controls, participants improved substantially within 36 minutes. 
While the reverse control performance did not match the normal control 
performance within the 36 minutes, it was approaching equal performance. 

Adaptation to a new control mapping shows learning within 6 minutes and 
proficiency approaching 30 minutes, consistent with Worringham and 
Beringer (1998). 

 
 

CONCLUSION 
 
The combination of all three experiments reveals the effect of different 

types of haptic and cognitive mapping of controls. In the box interaction study, 
the forces generated by the humans did not differ when the controls were 
reversed and subjects maintained their original interactions, suggesting that 
they are comfortable with either arrangement as long as the interface is 
consistent. In the third study, control reversal was quickly learned with a 
pronounced  improvement  in  about  a  half  an  hour’s  worth  of  practice. 
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Figure 10. Median first and last RMS score by trial – (less distance is better). 

The interaction between two may be beneficial for teaching control 
reversal when a novice first experiences it and can learn appropriate motions 
from an expert who guides them and possibly does not have a control reversal 
effect to minimize errors. In   the   second   study,   the   “Social   Force”   feedback  
produced the least amount of fighting between the participants’  haptic  forces,  
but detrimentally decreased their ability to perform the task. Methods to 
improve the interaction and ability to physical learn from another person are 
important and are not yet well developed. There are several measures that can 
be taken to promote better cooperation between humans and robots. First of 
all, improved force feedback and visual feedback could be implemented to 
reduce the fighting distance and fighting velocity. 

Also, the force feedback could be tailored to help compensate for 
weaknesses in the interaction. For instance, when cooperatively controlling a 
single interface, the spring force rendered back to the participants could be 
larger for displacements in the y-direction than for displacements in the x and 
z-directions, which had less fighting. Furthermore, the participants could be 
given more time to practice with several virtual environments, allowing them 
to become more comfortable with the devices, the virtual environments, and 
the overall haptic and cognitive interaction. 

A typical problem in multi-user collaboration is displaying both a position 
and a force to a novice at the same time. When using only one manipulator, 
only a force or a position can be displayed, but both cannot be simultaneously 
displayed. 



Effects of Feedback Mapping on Human Control of  Robotic  Systems  … 27 

One method to combine the benefits of Social Force Feedback with the 
benefits of Dual Force Feedback is to use a bimanual setup where each hand 
receives a different type of information (McAmis and Reed, 2012). In this 
implementation, one hand could receive the social (or guidance) information 
and the other could receive the task (environment force feedback) information. 
In this way, the two could more effectively cooperate while still accurately 
performing the task and maximizing learning effects. 

The Box Interaction experiment shows the analysis of a cooperative task 
using a principle components analysis (PCA). PCA is used to simplify the 
large number of force interactions throughout a task into a representative 
sample of the interactions that will be used in future analyses. Using the PCA, 
the interaction of two people can be tracked over time and possibly modeled to 
predict the continued interaction. This would possibly enable teleoperation 
systems with large lag to estimate the interaction of two people and use a local 
model to interact with while the system was being updated. This study 
supported the results by Worringham and Beringer (1998) by demonstrating 
that when control reversals happen, haptic force does not experience a 
decrement. However, most of the participants were male and the third study 
demonstrated that males can perform the control reversal situation better. If the 
population of the interaction study had more female-female dyads, the results 
may have shown a difference. In particular, mixed gender teams may result in 
different interaction modes. 

There are several related areas on which this research can expand. As 
discussed earlier, there are no studies that quantify a relationship between the 
difficulty of a rotational task compared to the difficulty of a related 
translational task. An extension of this work would examine the difficulty of 
only rotating the box into place compared to only moving the box into place. 
Ideally,   this   would   be   done   using   Fitts’   Law,   which   is   a   well-established 
method of comparing performance in target acquisition tasks, but a 
relationship between translation and rotation needs to be developed. 
Furthermore, more experiments could be performed as a continuation of this 
research. One type of experiment involves one participant performing a 
bimanual experiment in which his left Omni generates a preset motion and he 
must match it as closely as possible with his right Omni. This offers an 
additional type of human-robot interaction that could not be studied in this 
research. This bimanual experiment would further study human-robot 
interaction between one human and two robots. 

A variation on the bimanual version would be to use one experiment 
operator, one participant, and two Omnis in Dual Force Feedback mode. 
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The operator would move his/her Omni in a simple path and the 
participant would try to match the motion based on the feedback. In Dual 
Force Feedback, both the operator and the participant would feel the same 
force rendered back to them. This variation would be analyzed in a similar 
fashion to the bimanual experiment, except it would be different in that it 
would apply force feedback to the participant. 

From the cognitive standpoint, the transfer and permanence of learning to 
control an object when the controls are reversed warrants further study. Within 
each of the six blocks (each block lasting for 6 minutes), participants improved 
their ability to control the plane and this effect carried over to the next trial. In 
addition, there seems to be a performance plateau. Participants improved 
dramatically within the first two blocks (12 minutes), but then additional 
performance gains were slower. The sensorimotor system adapts fairly rapidly. 
However we did not address factors such as video gaming, gender, and 
attention. These factors warrant further study. The type of Video Game did 
confer a small performance benefit consistent with Rosser Jr., Lynch, 
Cuddihy, Gentile, Klonsky, and Merrell, (2007) and Green and Bavelier 
(2007). Games that involve first person movement and spatial mapping are 
more effective than games that are solely hand eye coordination. 
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