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ABSTRACT 

 
 

Human gait is a complex process that involves the coordination of the central nervous 

and muscular systems. A disruption to the either system results in the impairment of a person’s 

ability to walk. Impairments can be caused by neurological disorders such as stroke and physical 

conditions like amputation. There is not a standardized method to quantitatively assess the gait 

asymmetry of affected subjects. The purpose of this research is to understand the fundamental 

aspects of asymmetrical effects on the human body and improve rehabilitation techniques and 

devices. This research takes an interdisciplinary approach to address the limitations with current 

rehabilitation methodologies. 

The goal of my Doctoral research is to understand the fundamental effects of asymmetry 

caused by physical and neurological impairments. The methods discussed in this document help 

in developing better solutions to rehabilitate impaired individuals’ gait. I studied four major 

hypothesis in regards to gait asymmetry. The first hypothesis is the potential of asymmetric systems 

to have symmetric output. The second hypothesis is that a method that incorporates a wider range 

of gait parameter asymmetries can be used as a measure for gait rehabilitation. The third hypothesis 

is that individuals can visually identify subtle gait asymmetries. Final hypothesis is to establish the 

relationship between gait quality and function. Current approaches to rehabilitate impaired gait 

typically focus on achieving the same symmetric gait as an able-body person. This cannot work 

because an impaired person is inherently asymmetric and forcing them to walk symmetrically 

causes them to adopt patterns that are not beneficial long term. Instead, it is more prudent to 

embrace the asymmetry of the condition and work to minimize in specific gait parameters that 

may cause more harm over the long run. Combined gait asymmetry metric (CGAM) provides 

the necessary means to study the effect of the gait parameters and it is weighted to balance each 
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parameter’s effect equally by normalizing the data. CGAM provides the necessary means to study 

the effect of the gait parameters and is weighted towards parameters that are more asymmetric. 

The metric is also designed to combine spatial, temporal, kinematic, and kinetic gait parameter 

asymmetries. It can also combine subsets of the different gait parameters to provide a more 

thorough analysis. CGAM will help define quantitative thresholds for achievable balanced overall 

gait asymmetry. 

The studies in this dissertation conducted on able-body and impaired subjects provides 

better understanding of some fundamental aspects of asymmetry in human gait. Able body subjects 

test devices that aim to make an individual’s gait more asymmetric. These perturbations include a 

prosthetic and stroke simulator, addition of distal mass, and leg length alterations. Six able-body 

subjects and one amputee participated in the experiment that studied the effect of asymmetric knee 

height. The results which consisted of analyses of individual gait parameters and CGAM scores 

revealed that there is evidence of overall reduction of asymmetry in gait for both able-body subject 

on prosthetic simulators and transfemoral amputee. The transfemoral amputee also walked with a 

combination of distal mass with lowered knee height. Although this configuration showed better 

symmetry, the configuration is detrimental in terms of energy costs. Analyzing the data of gait 

with the stroke simulator showed that the subject’s gait does undergo alterations in terms of overall 

gait asymmetry. The distal mass and leg length alteration study has revealed some significant 

findings that are also reflected in the prosthetic study with distal mass. A leg length discrepancy 

(LLD) or the change of limb mass can result in asymmetric gait patterns. Although adding mass 

and LLD have been studied separately, this research studies how gait patterns change as a result 

of asymmetrically altering both leg length and mass at a leg’s distal end. Spatio-temporal and 

kinetic gait measures are used to study the combined asymmetric effects of placing LLD and mass 

on the opposite and same side. There were statistically significant differences for the amount of 

mass and leg length added for all five parameters. When LLD is added to longer leg, the temporal 

and kinetic gait parameters of the shorter limb and the altered limb’s spatial parameter become 

more asymmetric.  Contrary to the hypothesis, there was no significant interaction between the 
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amount of mass and leg length added. There were cases in all perturbations where a combination 

of mass and LLD make a gait parameter more symmetric than a single effect. These cases exhibit 

the potential for configurations with lower overall asymmetries even though each parameter has a 

slight asymmetry as opposed to driving one parameter to symmetry and other parameters to a larger 

asymmetry. CGAM analysis of the results revealed that the addition of distal mass contributes 

more towards overall asymmetry than LLD. Analyzing 11 gait parameters for LLD and mass on 

the same side showed that the overall asymmetry decreased for the combination of small LLD and 

mass. This is consistent with the findings from analyzing five individual gait parameters. 

Impaired subjects include individuals with stroke and amputees. The clinical trials for 

individuals with stroke involve training with the Gait Enhancing Mobile Shoe (GEMS) that pro- 

vides an asymmetric effect on the subject’s step length and time. Training with the GEMS showed 

improvement in clinical measures such as timed up and go (TUG), six minute walk test (6MWT), 

and gait velocity. The subjects also showed lower step length symmetry as intended by the GEMS. 

The ground reaction force asymmetries became more asymmetric as the spatial and temporal 

parameters became more symmetric. This phenomenon shows evidence that when an individual 

with stroke is corrected, for spatial and temporal symmetry is at the expense of kinetic symmetry. 

The CGAM scores also reflected similar trends to that of spatial and temporal symmetry and the r2 

correlation with the gait parameters proved that double limb support asymmetry has no correlation 

with CGAM while ground reaction force asymmetry has a weak correlation. Step length, step, and 

swing time showed high correlation to CGAM. I also found the r2 correlation between the clinical 

measures and the CGAM scores. The CGAM scores were moderately correlated to 6MWT and 

gait velocity but had a weak correlation with TUG. CGAM has positive correlation with TUG and 

has negative correlation with 6MWT and gait velocity. This gives some validation to CGAM as a 

potential metric that can be used to evaluate gait patterns based on their asymmetries. 

Transfemoral amputees were tested for their gait with varied prosthetic knee heights to 

study the asymmetrical effects and trained split-belt treadmill. Asymmetric knee heights showed 

improvement in multiple gait parameters such as step length, vertical, propulsive, and braking force 
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asymmetry. It also decreased hip and ankle angle asymmetries. However, these improvements did 

lead other parameters to become more asymmetric. The CGAM scores reflect this and they show 

overall improvement. Although the lowest knee height showed improvement, the input from the 

amputee suggested that the quality of gait decreased with the lowest knee height. These exploratory 

results did show that a slightly lower knee height may not affect the quality of gait but may provide 

better overall symmetry. Another exploratory study with split-belt treadmill training, similar to 

the protocol followed for individuals with stroke, showed definitive improvement in double limb 

support, swing time, step length and time symmetry. This was also reflected in the improvements 

seem post training in the CGAM scores as well. I found the r2 correlation of the CGAM and the 

gait parameters including gait velocity. Step length and swing time show consistent correlation for 

individual subjects and all the data combined to CGAM. Gait velocity shows a moderate correlation 

to CGAM for one subject and a high correlation to the other one. However, the combined data 

of gait velocities does not have any correlation with CGAM. These results show that CGAM can 

successfully represent the overall gait parameter asymmetry. The trends seen in the gait parameters 

is closely reflected in the CGAM scores. 

This research combines the study of asymmetry with people’s perception of human gait 

asymmetry, which will help in estimating the thresholds for perceivable asymmetrical changes to 

gait. Sixteen videos were generated using motion capture data and Unity game engine. The videos 

were chosen to represent the largest variation of gait asymmetries. Some videos were also chosen 

based on CGAM values that were similar but had large variation in underlying gait parameters. 

The dataset consisted of results of perturbation experiments on able-body subjects and asymmetric 

knee height prosthesis on transfemoral amputee. These videos were rated on a seven point Likert 

scale by subjects from 7 being normal to 1 being abnormal. Thirty one subjects took part in the 

experiment, out of which only 22 subject’s data was used because they rated at least 3 videos. 

The results show that the subjects were able to differentiate asymmetric gait with perturbations to 

able-body gait without perturbation at a self-selected speed. r2 correlation analysis showed that hip 

angle had mild correlation to the Likert scale rating of the 16 different gait patterns. Multivariate 
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linear regression analysis with a linear model showed significant contribution of ankle and hip 

angles, vertical, propulsive, and braking forces. It is interesting that the majority of parameters 

that showed significance are not perceivable visually. Ankle and hip angles are visually perceivable 

and this significance revealed that subjects seemed to perceive asymmetric ankle and hip angles as 

abnormal. However, the subjects do not perceive asymmetric knee angles as completely abnormal 

with evidence of no significance, no correlation, and neutral Likert rating for gait patterns that 

perturbed knee angles. 



CHAPTER 1: INTRODUCTION

Human gait is one of the most complex neuromuscular phenomenon which requires perfect

coordination between the brain, spine, and muscles. It is also a cyclic process that requires visual

and sensory feedback to execute the motions effectively. Since, gait is based on cyclic motion, it

also depends on physical characteristics such as the length of limbs, mass distribution of the limbs,

and ambulatory joints. The cyclic nature of gait is often presented as a close to symmetric gait in

able-body individuals. However, if this delicate balance among these factors gets impaired, the gait

of the individual gets affected. Gait impairment can be caused by amputation, unequal leg length,

adding a mass to the shank, and applying stiffness or damping at the knee. Impairments can also

be neurological such as stroke where an individual loses some control over one half of their body.

Rehabilitation devices and techniques are designed to counteract and restore the loss of

function of impaired individuals. To develop these rehabilitation methods, it is important to

understand the biomechanics of human gait. Researchers collect data on gait patterns by the use

of motion capture and force plates. Multiple variables are analyzed in order to portray the various

facets of human gait. There are spatial parameters such as step length defined by the distance

covered from heel strike of one foot to the heel strike of the opposite foot. There are temporal

parameters such as step time defined as the time taken between opposite heel strikes. Then there

is swing time the time taken from toe off to heel strike of the same foot. Double limb support is

the time spent when both legs are on the ground. The terminal double limb support is used for this

research study. There are kinematic parameters associated with joint angles of the ankle, knee, and

hip joints. Hip joints in the case of individuals with stroke and amputees also show abduction and

adduction. Then there are kinetic parameters such as vertical ground reaction forces, propulsive

or push off forces during toe off, braking forces during initial contact or heel strike, ankle, knee,
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and hip joint moments. Traditionally researchers analyze a small set of gait parameters in order

to evaluate the outcomes of their techniques. Researchers either focus on spatial, temporal, or

kinematic and sometimes kinetic data. There are few who analyze a larger spectrum of data.

Symmetry is one of the factors that is affected by both physical and neurological impair-

ments. Symmetry is used to evaluate the quality of a gait pattern. Researchers typically use spatial

and temporal symmetry as outcome goals for rehabilitating individuals with stroke and amputees.

In this study symmetry of multiple types of gait parameters is used to describe gait patterns and the

effect of methods used to perturb an individual’s gait. With more sophisticated processing power

it is possible to examine a larger set of gait parameters and their effects on gait patterns. This form

of analysis helps determine the relationships between the various gait parameters and gives more

insights for the development of novel methods to balance all gait parameters.

One of the main goals of rehabilitation of an individual with physical impairments is to

restore them back to an overall efficient gait pattern and posture. Rehabilitation to restore gait

may be characterized as improving functionality, being able to perform tasks with limited or no

assistance, and having a good overall quality of life. Since this study focuses on gait rehabilitation,

normality translates to improving gait quality and function. Gait quality encompasses several

factors such as symmetry, comfort, pain, and posture. Functional gait can be evaluated using

velocity, stability, and biomechanical parameters, which include kinetic, kinematic, spatial, and

temporal variables.

In contrast to much of the literature that aims to restore symmetry to individuals, this

research aims to understand the inherent limitation of gait symmetry to find balanced walking

patterns. Embracing one’s asymmetric gait allows all of the gait parameters to be slightly asym-

metric within limits that will be identified and promotes functional gait patterns that are feasible,

achievable, and viable over the long term. Overall, I aim to identify gait patterns that limit the

maximum asymmetry in any one measure to balance all aspects of gait and optimize functional

mobility.
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The motion capture and kinetic data that is collected using various devices such as the

Computer Assisted Rehabilitation Environment (CAREN), Vicon motion capture, and Protokinetic

zeno gait walkways are used to generate the combined gait asymmetry metric (CGAM). CGAM as

a metric offers a method to evaluate the overall asymmetry of a gait pattern. This data is analyzed

using Matlab scripts to extract the spatial, temporal, kinematic, and kinetic gait parameters. These

parameters will then be used to generate gait asymmetry metrics that represent overall gait asym-

metry. Further, the motion capture data will also be used to drive models in the Unity game engine

to generate realistic 3D gait playback models. High definition videos of these models will be used

to test the perception of individuals to determine their inherent biases of viewing human gait. The

perception of individuals plays an important role in determining the amount of asymmetry that is

socially acceptable. By combining the understanding derived from the metrics and perception, it

is possible to provide social and clinical thresholds. These thresholds can help in defining the level

of overall asymmetry in an individual’s gait that is beneficial. Figure 1.1 represents the search for

the ideal gait pattern that an individual with asymmetric gait can achieve after rehabilitation.

This dissertation contains the research and experiments that have been conducted on hu-

man gait asymmetry. There are four major aims for this project which are designed to evaluate

rehabilitation devices and techniques on their effect on gait asymmetry, expanded upon in Chapter

2. The first aim focuses on obtaining symmetry from an asymmetric system. This is the focus

on experiments that deal with the study with different knee heights on transfemoral amputees and

able-body subjects on a prosthetic simulator. It also plays a major part in the study of multiple

physical changes. The second aim is analogous to aim one where I aim to study the physical and

psychological effects by analyzing the perception of individuals on asymmetric gait patterns. This

study of the inherent biases of gait perception will involve walking videos that are generated in

Unity game engine. The third aim is the evaluation of the CGAM metric that has been developed

to evaluate the progress of overall symmetry of an individual through the rehabilitation process.

The final goal aims to explore the balance between gait quality and function. This is addressed by

a combination of analyses using results from clinical trials and able-body studies.

3
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Figure 1.1: Determining Optimized Gait Pattern Post Rehabilitation Training.

To demonstrate that an asymmetric system cannot return to perfect symmetry, the research

study looks at physical asymmetries in able-body and impaired individuals. The able-body subjects

will be tested with alterations to their legs, and simulators for stroke and prosthetics. These

alterations are designed to fundamentally alter an individual’s gait and make it more asymmetric. I

study the basic effects of these changes to gait parameters as well as discuss the potential benefits of

combining asymmetric changes for a better overall gait pattern. In addition to the effects observed

in altering able-body subjects, this research will also use data from impaired subjects. I have

collected data from amputees and individuals with stroke to analyze the asymmetries of their gait

parameters. Each of the impairments affects gait in certain parameters, such as kinematic, kinetic,

or spatiotemporal. Gait asymmetries of amputees differ in all of the parameters depending on
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the characteristics of their prostheses. In this research study, I test amputees with different knee

heights, addition of distal mass, and split-belt treadmill training. Stroke patients also show changes

in all gait parameters. However, rehabilitation techniques often focus on making their spatial and

temporal parameters more symmetric. In this research study, one of the clinical aspects dealing

with individuals with stroke involves the Gait Enhancing Mobile Shoe (GEMS) where the subject

are trained to learn a new gait pattern similar to a split-belt treadmill.

Perception of different impairments is a social driver in rehabilitation. An individual with

an impairment goes to rehabilitation in order to ambulate effectively on a daily basis and to help

restore a normal gait pattern. To study the inherent perceptions of individuals, this research study

will compose play back videos of motion capture data using the Unity game engine of various types

of gait patterns. These videos will be evaluated by users to get a sense of their varied perceptions.

This study will help understand the parameters of human perception of gait. For example, a small

change in step time is perceived easily compared to a small change in step length. I can also try to

correlate the actual changes in gait parameters detected by analyzing data and what subjects detect

by visually studying the videos.

In this study, I have also developed the novel CGAM metric to evaluate overall gait sym-

metry. I have used this metric in evaluating various gait patterns that I have recorded using motion

capture and force data. This metric will also be used to evaluate clinical data from the experiments,

once enough data has been collected on the studies. I also plan to use these results to correlate the

perception of different people. Further, I plan on using all the different gait patterns and their varied

parameters to define relationships between gait quality and function. For example, a prosthetic leg

that is designed to be functionally superior may not exhibit a symmetric gait or cause excess strain

affecting the gait quality.

The document contains seven chapters including the introduction. The design is predicated

on providing a coherent narrative. Chapter 2 reiterates the research hypotheses. Chapter 3 analyzes

the literature related to various forms of gait asymmetries and identifies the gaps in research.

Chapter 4, 5, and 6 explain the experimentation methods and results of various experiments con-
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ducted on able-body subjects, amputees, individuals with stroke, and perception experiments on

individuals. Chapter 4 summarizes the methods for the experiments conducted on able-body

subjects with various perturbations such as stroke simulator, leg length discrepancy, addition of

distal mass, and combination of leg leg length discrepancy and distal mass. Chapter 4 also covers

the formulation and results of CGAM. The CGAM scores are used to compare able-body gait

patterns with prosthetic gait pattern. I also investigate the use of LibSVM based machine learning

algorithms to categorize gait patterns based on gait parameter asymmetry. Chapter 5 summarizes

the methods and results for clinical experiments with amputees and individuals with stroke. Two

types of experiments were conducted on transfemoral amputees which are as follows: asymmetric

knee height and split-belt training. In addition to a transfemoral amputee I tested six able-body

individuals with prosthetic simulators with asymmetric knee heights. The experiments on indi-

viduals with stroke describes the protocol and results of the training with the GEMS. Chapter 6

summarizes the methods and results of the experiment performed to evaluate the perception of

gait asymmetry of individuals using motion capture data in computer generated human models.

Finally, Chapter 7 discusses the results from Chapters 4, 5, and 6 to draw conclusions on all the

experiments and explains the contribution of the results in satisfying the hypotheses. Further, I

also discuss how this research can be extended in the future, the questions I have been able to

answer, the questions that still remain unanswered, and the new questions that have arisen from

this research.

6



CHAPTER 2: SPECIFIC AIMS

2.1 Goal

The overall goal of this research is to provide novel data driven methodologies to rehabili-

tate asymmetric gait using asymmetric devices and techniques.

2.2 Aim 1: Symmetry from an Asymmetric System

Hypothesis: It is not possible for an individual with impairments that render their gait

asymmetric to achieve a symmetric gait similar to an able-body individual.

When the legs have different physical or control properties, allowing for slight spatial and

temporal asymmetries will result in more symmetric forces than a gait with perfect spatial and

temporal symmetry.

2.3 Aim 2: Clinical Evaluation Metric

Hypothesis: There exists a gait pattern that an individual with physical or neurological

asymmetries can achieve by balancing the effects of multiple gait parameters.

I investigate methods to estimate the optimized asymmetries of various gait parameters.

The goal is to design and validate a quantitative method to aid rehabilitation measures based of

gait parameter asymmetry.

2.4 Aim 3: Perception of Gait

Hypothesis: Individuals will be able differentiate between asymmetric gait from normal

gait.
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Humans are inherently capable of noticing asymmetries in gait. The goal is to establish the

degree to which they are aware of these differences and to evaluate the impact of visual perception

in evaluating gait patterns.

2.5 Aim 4: Relationship between Gait Quality and Gait Function

Hypothesis: Changes in functional gait parameters affect the quality of gait.

Functional gait parameters are used to quantitatively evaluate the dynamic effects of a gait

pattern. These include speed, cadence, stability, and all biomechanical parameters. Gait quality

signifies the subjective variables that influence gait patterns and also societal perception of gait,

some of the variables that influence gait quality are symmetry, comfort, pain, and posture.
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CHAPTER 3: BACKGROUND

3.1 Historical Push for Symmetry in Rehabilitation

Since ancient times humans were taken by symmetry. Symmetry is the quality of an object

to be unaffected by transformation and maintain the proportions, like a reflection. Symmetry

can be found in art [2], engineering [121], communication [46], anatomy [3], and in forms of

psychology [63]. Symmetry is encouraged in engineering systems because it is attributed to

efficiency and functionality of the system. Symmetry also makes designs easier to visualize and

model mathematically. The evolutionary design of the human body is a testament to the importance

of symmetry and what is perceived by the society as normal [35]. Leonardo da Vinci’s Vitruvian

man illustrates the importance of symmetry and perception of symmetry of the human body [76].

Symmetry is an important factor that is used to evaluate the efficacy of lower limb re-

habilitation techniques. Achieving perfect gait symmetry is not possible even amongst able-

bodied individuals. Many able-bodied individuals express up to 6% asymmetry in their gait

parameters [114]. Gait has to be symmetric in spatial, temporal, and kinematic parameters to

be perceived as normal. In addition to these parameters, the walking velocity has to be from

0.8 m/s to 1.14 m/s to be considered community ambulation [66]. Gait symmetry is affected

when an individual is impaired physically either due to a stroke or amputation. Stroke affects

an individual’s nervous system and modifies the motor control pathways rendering the limbs

paralyzed and asymmetric in terms of function. Rehabilitating individuals with stroke involves

retraining the motor pathways to overcome the effects of neuroplasticity of the brain to correct

the subject’s gait and posture [16]. Unilateral lower limb amputation, similar to a unilateral

stroke, renders the individual physically asymmetric. Rehabilitation of amputees is different from
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individuals with stroke as the amputees do not posses the physical limb and learn walking with the

help of a prosthesis.

3.2 Dynamic Systems

Unimpaired human walking can be represented as two double pendulums that are synchro-

nized to bring about a periodic form of locomotion. Representing human legs as double pendulums

simplify the mathematical models required to analyze the dynamics of walking. The study of

Passive Dynamic Walkers (PDW) uses the double pendulum to theoretically model these bipedal

walkers [70]. PDW models use the force of gravity to propagate their gait over a small (eg. 3�)

slope. These models have been used to model unimpaired human gait. This means the PDWs

were physically symmetric and displayed more or less symmetric spatial, temporal, and kinetic

outcomes. However, this research centers on understanding physically asymmetric systems.

The nine mass asymmetric PDW was put forth by Sushko et al. [111] to help with gait

rehabilitation. The asymmetric PDW model can tune the mass and length of the model’s segments

to bring about various forms of gait. This is significant because asymmetric human walking can be

modeled by using a PDW. An experiment conducted by Handzic et al. [30] shows the close trend

of the kinetics and kinematics of the human wearing an ankle mass and the PDW model.

This leads to the study conducted by Handzic et al. [30] which looked at double pendulum

systems with different mass distributions. The study found that it is possible to obtain symmetric

motions from dissimilar double pendulum systems. Due to the differences in mass distribution

between the double pendulums, the forces experienced at the joint were different as well. This ties

in well with Aim 1 because matching motion can be brought about by different forces. The forces

experienced at the joints are important because there is a direct cause of deterioration of bone and

synovial fluid volume at the joint leading to orthopedic ailments such as arthritis.
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3.3 Prosthetic Rehabilitation

Lower limb amputation is debilitating to an individual’s gait because they may lose multiple

joints. There are 3 levels of amputations and disarticulations for each of the three joints: hip,

knee, and ankle. Transfemoral, amputation above the knee, and transtibial, amputation below the

knee, are the most common types of lower limb amputation. Transfemoral prosthetics have more

dynamic effects on an individual’s gait than a transtibial prosthesis. This is caused by the loss of the

knee and ankle joints that are responsible for most of the load bearing and balance during walking.

When designing prosthetic systems, factors such as the weight of the prosthesis, kinematics of the

joint mechanisms, and length of the prosthesis play major roles in determining the comfort for the

prosthetic user.

Prosthetic simulators (PS) are devices that can mimic the effects of wearing a prosthesis

on able-bodied individuals [22, 61, 110, 115]. They are usually modified knee braces that have

an attached prosthetic knee and foot. PS render the user asymmetric and makes them rely on

the prosthetic leg to ambulate. These devices provide an easy platform to test different prosthetic

components before testing it on actual amputees. Another important use of this device is to test the

adaptation of users to changes in dynamics of the prosthetic system.

In this research, the prosthetic simulator is used to evaluate dynamics of asymmetric knee

locations on a transfemoral prosthesis. Moving the knee location to a lower position could be po-

tentially advantageous to a transfemoral amputee who is physically asymmetric. Previous studies

by Craig et al. [43] on asymmetric PDW models demonstrated that a lower knee location improves

spatial and temporal symmetry of the PDW gait. The gait dynamics of the PDW are defined in

terms of mathematical equations which allowed for the study to focus on the passive dynamics

of walking. Following this result, a preliminary study using a prosthetic simulator was conducted

with 3 different knee height settings [83]. The study found that spatial and temporal symmetry

improved when the knee was at the lowest position.

Literature on the gait of prosthetic users show that they tend to exhibit less efficient and

unnatural gait patterns [21, 41]. This inefficiency is more evident in transfemoral amputees than
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transtibial amputees, which results in the users exerting a great deal of effort to compensate for

unwanted motions [45]. Since amputees are physically asymmetric, bringing about efficient and

symmetric gait depends on multiple factors such as length, weight of the prosthesis, type of socket,

the length of residual limb, etc. A study on unilateral transtibial prosthetic users showed that as

the mass of the prosthesis gets closer to their intact shank weight, the subject’s gait becomes more

asymmetric [68].

3.4 Stroke Rehabilitation

Individuals with stroke are similar to unilateral amputees as they lose control of one side

of their body rendering them physically asymmetric. Common impairments caused by to stroke

include the loss of proprioception in the paretic limbs, loss of flexion control at the knee, loss

of dorsiflexion and plantarflexion at the ankle (drop foot phenomenon), increased damping at all

upper and lower limb joints, and limited range of motion of the upper body. Due to the considerable

effects of stroke, the subjects usually tend to compensate in various ways such as circumduction at

the hip to prevent scuffing the floor because of drop foot.

The combination of loss of control and compensation strategies make the individual’s gait

highly asymmetric [80]. Gait of individuals with stroke is asymmetric in all types of gait measures

which include, spatial, temporal, kinetic, and kinematics. Spatial asymmetry is attributed to the

dissimilar step length between right and left leg. Similarly, temporal asymmetry is associated with

the step time between the paretic and normal leg. The forces the subject exerts and experiences on

the joints are also different. Subjects tend to use their non-paretic leg more to keep their balance

and hence exert more force. On the other hand, they tend to spend less time on their paretic leg

and exert less force [47]. As an effect of this behavior subjects experience more discomfort on

their non-paretic limbs. The subjects also tend to have different kinematics on the paretic and

non-paretic sides and the dissimilarities in motion coupled with the asymmetric kinetics cause rise

to several problems over the long run. A study conducted by Lewek et al. [62] found that gait

asymmetry leads to deterioration in balance which leads to falls in patient’s with stroke.
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Rehabilitation techniques that are used to restore gait impaired by stroke involve some

form of asymmetric perturbations that try to restore the symmetry between the paretic and non-

paretic sides [93]. Split belt treadmills are a common tool that are used to apply this rehabilitation

technique. The split-belt treadmill has two treads that can move at different velocities. This

is used by clinicians to change the tread velocity of the impaired side to match the normal leg

which exaggerates the asymmetry of the individual. However, if the tread speeds were made the

same afterward or the subject is made to walk over ground, the subject will have some carry

over effect [95]. The carry-over effects are usually improved spatial and temporal symmetry.

Unfortunately, these after-effects are usually temporary due to neuroplasticity, and the subject

reverts back to their original walking pattern.

Altering neural patterns to override neuroplasticity requires persistent training by the sub-

jects, similar to professional athletes. Due to the cost and poor carry-over effects, the split-belt

treadmill cannot be used for regular training. Hence, the Gait Enhancing Mobile Shoe (GEMS)

was developed by Handzic et al. [26] that provides the similar effects as a split-belt treadmill. The

GEMS amplifies the spatial and temporal asymmetry of the subject’s gait similar to the split-belt

treadmill. In essence, the GEMS is a shoe worn by the user on their non-paretic side and when

stepped on the shoe moves backward helping the subject to push off properly. This motion also

forces the subject to spend less time on their paretic side just like a split-belt treadmill. The GEMS

also forces the subject to consciously focus on their posture and accommodate the GEMS during

walking which leads to better results compared to the split-belt treadmill.

There are other rehabilitation techniques such as partial suspension of weight training,

electro-stimulation, periodic cues, and balance training [7, 14, 97, 113]. Each of the techniques

have their merits and train the individual in a specialized manner, which means a combination of

this methods may provide beneficial to the subject. In weight suspension training the subject’s

weight is partially supported by a harness while the subject is made to walk on a treadmill. This

kind of training puts the subject at ease and reduced the stress on their body during walking. The

recovery period for these subjects takes a longer time. This is because the exercise they receive by
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relieving some of their total body mass is not as effective as training without suspension. Electro-

stimulation therapy involves stimulating the muscles of the subject to perform tasks. This method

does have good results in terms of regaining mobility but unfortunately the system does not have

lasting results in rehabilitation.

Stroke is one of the leading causes of disability among adults. Patients impaired by stroke

have difficulty with ambulation, performing daily activities, communication, and cognition. Walk-

ing function for an individual with stroke is a primary indicatior of physical independence [5].

Literature shows that only about 7-22% of individuals with stroke are able to regain sufficient

function to be considered independent community ambulators [39, 66].

Gait retraining for individuals with stroke focuses on two main outcome measures: velocity

and symmetry. Walking velocity and cadence are used as indicators of overall gait performance

and can be used to differentiate the levels of disability among the stroke patient population [66, 81].

A gait speed of 0.8 m/s is considered the required minimum for community ambulation [6, 81], and

typically able-body gait velocity was measured to be around 1.14 m/s [66]. Gait symmetry is used

as a measure of gait quality [15, 79]. As mentioned above gait asymmetry in able-body gait is

often asymmetric of about 4-6% in the spatio-temporal and kinetic parameters [37, 114].

Gait after stroke becomes asymmetric (or hemiparetic) as a consequence of altered neu-

romuscular signals affecting leg motor areas, typically hyperextension at the knee and reduced

flexion at the hip, knee, and ankle [8, 52, 117]. Hemiparetic gait is characterized by a significant

asymmetry in temporal (e.g., time spent in double-limb support) and spatial (e.g., step length)

measures of interlimb coordination [1, 8, 114]. Propulsive force of the paretic limb is also reduced

compared to the non-paretic limb, as are work and power of the paretic plantar flexors [1, 7].

The significant decrease in propulsive force results in smaller overall step lengths, which in turn

affects the patient’s gait velocity. Finally, vertical ground reaction forces (GRFs) are decreased

on the paretic limb relative to the non-paretic limb [53], reflecting diminished weight bearing and

balancing capabilities by the paretic limb.
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In this research study, I concentrate on understanding the fundamental aspects in which

stroke affects gait symmetry. To understand the effects of asymmetry, design better rehabilitation

devices, and techniques I require a better understanding of the dynamics of gait impaired by

stroke. To fully understand the dynamics I require data from a lot of subjects to analyze the subtle

variations in their gait. Unfortunately, acquiring a large population of individuals with stroke is

hard and hence I need a device that can simulate stroke like gait

3.5 Effects of Leg Length and Mass

Previous research about asymmetric physical changes reveal a range of different effects on

an individual’s gait. The literature review for this study looked at various physical changes such

as leg length discrepancy (LLD), the addition of mass at the distal end of the leg, amputation, and

stroke. It is important to remember that although these physical changes affect every individual

differently, they can all be characterized using the asymmetries of biomechanical gait parameters.

It is not uncommon to find similar effects on gait asymmetry with different physical changes. To

illustrate these differences and similarities, the literature review also focused on prior quantitative

gait metrics and the algorithms used to discern between different types of gait.

Approximately 0.001% of people have some form of corrective gear due to LLD [23].

LLD may cause serious long-term consequences based on several variables such as the design

of corrective devices, age, weight, posture, and level of activity [24]. An increase of 2 cm or

3.7% in leg length difference has dramatic overall gait asymmetry, especially in vertical reaction

forces during push-off and initial contact [51]. Further, LLD causes abnormal changes in foot

loading patterns and increases in joint torques/moments, which could lead to long-term effects [82].

Finally, studies have also shown that LLD causes more overall strain on the body and leads to

increased expenditure of energy [25].

Limb mass, like limb length, plays an integral role in the dynamics of human walking.

Adding mass on limbs, especially towards the distal end, brings about increases in metabolic

activity and disrupts spatiotemporal symmetry [9]. Adding mass at the distal end has been shown
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to force the user to change their walking posture by moving their arms in order to maintain

balance [17]. In some cases, simple solutions can correct irregular gait. For example, when

individuals with ataxia wore a 2 lb. mass on their chest, unstable motions significantly decreased

and the gait was more steady and efficient [19]. These effects may cause adverse changes in

walking patterns in able-bodied symmetric individuals, but the addition of weight to the non-

paretic limbs of individuals with stroke has shown improvement in walking speed, step length,

cadence, and weight bearing in the paretic limb [90].

3.6 Gait Symmetry Metrics

When an individual with an asymmetric impairment walks with symmetric step lengths,

other aspects of gait become asymmetric, such as the forces in the joints [11, 30], the amount

of time standing on each leg [53], and other temporal variables [38, 101], all of which can be

detrimental to efficiency and long-term viability. Understanding how symmetry affects function

could change the fundamental nature of clinical gait rehabilitation. The results from this research

could also help tailor rehabilitation treatments to target each individual’s specific impairment. An

overall analysis of multiple gait parameters can bring equilibrium to the different, and sometimes

conflicting, requirements of gait. In order to distinguish and characterize the effects of multiple

gait parameters, I use metrics that consolidate and quantify the overall change in gait. This paper

demonstrates the effectiveness of these quantitative gait metrics in classifying multiple physical

asymmetric changes.

Several gait metrics have been used clinically in the evaluation of different gait impair-

ments. These metrics can also be used to classify gait based on different types of information.

There are two types: qualitative [69, 108] and quantitative [100, 103, 104] metrics. Many metrics

rely on either kinetic or kinematic data to categorize different gait motions and behaviors. Some

metrics have the ability to jointly analyze kinetic and kinematic parameters [13, 40]. Most gait

metrics use advanced statistical analysis like principle component analysis (PCA) and singular

variable decomposition (SVD) to reduce dimensionality to make the running of the data easy [72].
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The processed data is then classified using either the Euclidean or Mahalanobis distances [72].

These distances become the scores which form the central part of the gait metric. Another study

by Hoerzer et al. [40] proposed the comprehensive asymmetry index (CAI) which combined

gait asymmetry using PCA and Euclidean distances. CAI was effective in identifying that shod

running reduces gait asymmetry compared to barefoot running. A prior study used a combination

of Mahalanobis distances with data reduction techniques on a pre-processed dataset, to analyze

kinematic and kinetic gait parameters [13]. They developed several metrics to classify the data and

showed that they can successfully classify the abnormal data from standard normal data set. The

precursor to the combined gait asymmetry metric (CGAM) used a symmetry index processed using

PCA measured using Mahalanobis distances. Without the restrictions of dimensionality reduction,

CGAM served as a versatile gait asymmetry metric [86].

3.7 Perception of Human Walking

The perception of human walking is required to establish the fundamental biases that may

exist among people. Humans have the innate ability to recognize complex movements of other

humans [57, 67]. This generally makes humans better at detecting asymmetric changes in an

individual’s movement or their own gait beyond a certain threshold [60]. There is precedence for

studying the perception of human motion based on motion capture data [56], passive dynamic

walker (PDW) models [32], and human vision based morphs to categorize bipedal motion percep-

tion [20]. Recent evidence showed that perception of temporal asymmetries in gait due to split-belt

treadmills can be associated with spinal level afferent inputs [44]. Humans with anterior cruciate

ligament reconstruction detected asymmetry of their own gait differently from able-body subjects

while on a split-belt tread mill [98].

Human perception is often biased against abnormal motions or postures. The uncanny

valley is a well-documented concept that notes the realistic motion that machines can perform

before it appears to be human like and escape the inherent perception biases of humans [71].

The uncanny valley applies to animations, robots, and different walking patterns among humans.
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Discrepancies in walking patterns are especially apparent to people when they encounter gait

impaired by stroke, cerebral palsy, Friedrich ataxia, and use of prosthetics. This is because humans

recognize the slightest variations in discrepancies of step time, length, or other noticeably different

changes to the norm [32].

An extensive study conducted by Handzic et al. [32] studied the perception of impairments

and uncanniness of 25 different gaits. This study offers precedence to this study to further analyze

the inherent biases of naive and experts subjects. The 25 different gaits generated by Handzic

et al. [32] used a mix of PDW models and actual human data to create videos in 6 different

categories: normal gait, gait cadence, knee height, spatiotemporal asymmetry, Roll Over Shape

(ROS) asymmetry, and knee damping with asymmetric shank mass. The study also used videos

generated using Matlab code that offers a 2D viewing experience to the subjects. The results

presented in Chapter 6 used videos generated using the Unity game engine to generate videos

using 3D models to give a sense of realistic appeal to the subjects. The methods and the results

obtained by showing the different gait patterns will be elaborated in Chapter 6.

3.8 Computer Assisted Rehabilitation Environments

The experiments involving the stroke & prosthetic simulator, leg length change, distal

mass addition, and unilateral transfemoral amputee (different sockets and prosthetic knees) were

conducted on the computer assisted rehabilitation environment (CAREN). Kinematic and kinetic

data were collected for all the experiments conducted on the CAREN. The CAREN was designed

by Motek Medical R�, it is a state of the art rehabilitation environment consisting of a Bertec R�

split-belt treadmill, a MOOG R� motion base (MB-E-6DOF/12/1000KG) with six degrees of free-

dom (DOF), a 10 camera Vicon R� (Edgewood, NY) infrared motion capture system, Bertec R�

force plates (FP4060-08-1000), and a panoramic display for full visual immersion. The subject’s

motions were captured using reflective markers placed on specific locations on the subject’s body.
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CHAPTER 4: EFFECT OF MULTIPLE PHYSICAL CHANGES 1

This chapter on multiple physical changes focuses on Aims 1 and 4 as it analyses asymmet-

ric effects on human gait, and the results of these analyses can help in determining the relationship

between the quality of gait and its function. The idea behind testing multiple physical changes is to

understand the basic biomechanical characteristics in order to help formulate better rehabilitation

technology. Some of the physical asymmetries that were tested are as follow: Stroke Simulator

with variable stiffness and damping, change in leg length, adding mass at the distal end, and the

combination of leg length and mass. A novel contribution of this research is to reveal the effects

of the combination of multiple physical changes, in this case, adding mass to prosthetics to change

the dynamics of the gait. The asymmetries of all the changes were quantified using the CGAM

to provide the overall gait asymmetry for all types of gait. The summary of information for the

experiments performed in this chapter are provided in Table 4.1.

4.1 Stroke Simulator

Individuals impaired by stroke exhibit neuromuscular weakness and paralysis on one side

of the body. This is due to the neuromuscular disruption that causes muscles to behave abnormally

either under or overexcited. These effects often result in the hyperextension of the knee joint

and the inability to plantar flex the ankle joint. The stroke simulator is a small, lightweight, and

adjustable knee orthotic device [58, 59]. The device was constructed by Christina-Anne Lahiff and

used for her thesis [58].The stroke simulator simulates hemiparetic gait on able-body individuals

by impeding the knee joints motion. This device also serves as a means to quantify the Ashworth

scale. The Ashworth scale is used clinically to rate knee spasticity in individuals with stroke but it
1Part of this chapter was published in Gait and Posture, 2017, Volume 58, Pages 487 - 492. Permission is included

in Appendix A
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Table 4.1: Experiments Presented in the Chapter.

Experiment Subjects IRB Funding Source Publications
Stroke Simulator⇤1

Able Body 5 Female # Pro00016724 NSF Lahiff et al.
5 Male [58, 59]

LLD & Distal Mass⇤2

Able Body 7 Female # Pro00016724 NSF Muratagic et al.
13 Male [73, 74]

Socket Testing
Transfemoral Amputee 1 Female # Pro00026445 AOPA Kahle et al.

[48]
Ramakrishnan et al.

[84]
⇤1 Christina-Anne Lahiff designed the stroke simulator that was used in these experiments
⇤2 Haris Muratagic completed the first half of the experiments with LLD and distal mass on

opposite legs

is extremely subjective to a particular clinician and hence this orthosis can be used to train on the

different levels of spasticity. All the gait experiments were performed on the CAREN where the

kinematic and kinetic data were collected for all subjects. Previous tests have shown that the gait

with and without a stroke simulator are significantly different [59].

The stroke simulator is a portable knee orthosis equipped with a spring-damper mechanism

to convey variable stiffness and damping as well as to evaluate the effects of asymmetric dynamics

of the knee on the gait patterns of healthy, able-bodied subjects. Damping and stiffness of an

individual affected with stroke have been rated by the Modified Ashworth Scale [120], but it

has never been quantified in terms of numerical values for stiffness and damping levels. The

eventual quantification of the Modified Ashworth Scale would allow for a more personalized

design of orthotics that could aid rehabilitation. Figure 4.1 shows the knee orthosis prototype

design. Figure 4.2 shows initial results of the effect of the stroke simulator on an individual’s gait.

The CGAM or modified Mahalanobis distances shown in orange indicate the overall asymmetry

of the gait pattern. Normal walking clearly has the lowest CGAM score, while it is highest with

the stroke simulator and the magnitude of after wearing the stroke simulator indicates carry over
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Figure 4.1: Stroke Simulator on a Subject.

effects. In this preliminary experiment, I study the effects of one of the various combinations of

damping and stiffness on the knee orthosis. The rationale behind the device is to simulate knee

damping that is typically seen in stroke patients. Recreating the damping and hysteresis on able-

body subjects similar to that of an individual with stroke provides researchers the ability to study

multiple levels of damping and hysteresis. This also mitigates the recruiting limitations of trials

that involving people with stroke. In addition to this the device also can be used to estimate the

Ashworth scale. The results section of this chapter has more details of the device using the CGAM

metric.
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Figure 4.2: Initial Results with the Stroke Simulator.

The majority of the walking process is governed by the passive dynamics of the legs

and body [27], which generally leads to symmetric walking when both sides of the body are

identical. In an asymmetrically impaired individual, asymmetric control effort is necessary to

create symmetric motions. These compensatory motions, such as using alternate arm movements

along with abnormal torso and hip flexion, are commonly used by disabled individuals. These

adaptations often lead to back pain and premature deterioration of joints in individuals with stroke

and also cause stresses at the residual limb socket in amputees.

4.2 Methods: Leg Length and Weight Alterations

Each combination of physical parameters was performed once, with the exception of base-

line walking that was performed at the start and end of the experiment. Each combination was

tested for approximately two minutes with varying times between trials to apply the physical

alterations. To avoid the effects of adaptation from previous physical combinations in the study,

only the last thirty seconds was evaluated in each session. The total walking time for the entire

experiment was approximately 32 minutes for each subject, and a short break was available to the

participants between sessions as needed.
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The 16 different physical combinations of this walking study are shown in Figure 4.3

and described in Table 4.2. The leg length device was attached to the non-dominant foot of the

participant and is shown in Figure 4.3. The two settings for the applied leg length change were

small and large, measuring 27 mm(1.05 inches) and 52 mm (2.05 inches) respectively. It was

designed to be under 0.350 kg (0.77 lb) for the high setting and under 110 g (0.25 lb) for the lower

setting. These small mass values ensured that this shoe would only simulate pure leg length change

and not add unwanted weight. For the application of weighted walking, a weighted ankle strap with

several lead weight inserts was attached to the dominant leg. There were two distinct mass values

for this parameter, as shown in Figure 4.3. The small weight size was approximately 2.3 kg (5.07

lb), and the large was 4.6 kg (10.14 lb). The leg lengths were chosen to represent a larger than 2

cm discrepancy as per the literature. The masses were selected based on a PDW study conducted

by Handzic et al. [28] that used a linear relationship of x and 2x to test the scenarios used in this

study for leg length and distal mass. An additional strap was included to avoid interfering with any

infrared position sensing markers.

4.3 Methods: Participants for LLD, Distal Mass, and Stroke Simulator

There were twenty subjects (13 male, 7 female) that participated in the walking study,

all with limited to no exposure with physically induced asymmetric walking [73]. The complete

experiment was conducted in two different phases. The first phase consisted of 10 subjects (8 male

and 2 female) where nine of the ten participants in the study were right foot dominant. The data of

the left foot dominant subject was mirrored to be included in the analysis. Note, the dominant foot

was always used for the applied weight and, in this phase, the leg length change was always applied

to the non-dominant foot for consistency. The subjects walked with the weights on their right leg,

heights on their left leg, and the combinations were on opposite sides as seen in Table 4.2 and

Figure 4.3 (f – l). The second phase consisted of 10 subjects (5 male, 5 female) who were all right

leg dominant. The subjects walked with all the perturbations on their left leg as seen in Table 4.2

and Figure 4.3 (d,e & j – o). The age of all participants ranged from 18 to 30 years old, with no
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Table 4.2: All Combinations of Settings That Were Applied to the Participants. Note:
Combinations 2 - 15 Were Randomized for Each Participant

Combination Leg Length Change Weight Applied Side
LL_N-W_N None None None
LL_N-W_B None Big Left
LL_N-W_B None Big Right
LL_N-W_S None Small Right
LL_N-W_S None Small Left
LL_S-W_N Small None None
LL_B-W_N Big None None
LL_S-W_S Small Small Same Side
LL_B-W_S Big Small Same Side
LL_S-W_B Small Big Same Side
LL_B-W_B Big Big Same Side
LL_S-W_S Small Small Opposite Side
LL_B-W_S Big Small Opposite Side
LL_S-W_B Small Big Opposite Side
LL_B-W_B Big Big Opposite Side

LL_N-W_N2 None None None

physical impairments, past knee injuries, or large leg length discrepancies. The average height, leg

length, weight, and walking speed of the participants was 1.785 m (70.3 in), 0.981 m (38.6 in),

82.8 kg (182.5 lbs), and 1.22 m/s (48.03 in/s), respectively. All experiments were conducted with

the approval of the Institutional Review Board at the University of South Florida after informed

consent and signing the consent form.

4.4 Results: LLD and Distal Mass Perturbations

The altered gait patterns are measured using the percentage of asymmetry between each

leg, calculated using Equation 4.1, for step length, step time, peak vertical force, push off force,

and braking force. These biomechanical parameters were chosen because they are related to an

individual’s gait pattern and are generally impacted by physical and neurological asymmetries.

Since, I am interested in the changes from the baseline gait patterns, all the graphs shown below

are normalized to the baseline walking pattern of the subjects such that baseline walking is always
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Table 4.3: Summary of the Statistics. (Bold implies Statistical Significance)

Measure Mass Effect Height Effect Interaction Effect

Step Time
p < .0001 p < .0001 p = .08

F(4, 165) = 87.5 F(2, 165) = 56.0 F(8, 165) = 1.8

Step Length
p < .05 p < .0001 p = .97

F(4, 165) = 2.9 F(2, 165) = 15.3 F(8, 165) = 0.29

Peak Vertical Force
p < .0001 p < .0001 p = .84

F(4, 165) = 9.6 F(2, 165) = 22.6 F(8, 165) = 0.53

Peak Pushoff Force
p < .0001 p = .26 p = .18

F(4, 165) = 137.0 F(2, 165) = 1.35 F(8, 165) = 1.44

Peak Braking Force
p < .0001 p < .05 p = .73

F(4, 165) = 137.0 F(2, 165) = 4.1 F(8, 165) = 0.66

at zero asymmetry. The baseline condition means no added mass and no added height difference.

The gait data is normalized to the baseline/unaltered walking pattern of the subjects such that

baseline/unaltered gait is always at zero asymmetry (i.e., 0 on y-axis with no added length of mass).

The means of step length (-2.9%), step time (-0.39%), vertical force (-1.6%), propulsive force (-

4.3%), and braking force (-3.5%) were subtracted from all of the respective graphs to normalize the

plots. This normalization was done to ensure continuity between the length and mass perturbations

being applied to the same and opposite limbs to focus on the change in gait pattern [73].

To determine statistical significance, SPSS statistics software was used to perform a two-

way ANOVA with asymmetry in each parameter as the dependent variable and the independent

variables were LLD and added mass with interaction effects. The summary of these results with

the statistical significance of each gait parameter is shown in Table 4.3. Figures 4.4 – 4.8 show each

of the parameters as a function of mass added and leg length change. The X-axis represents the

mass added and is split between mass added to the same or opposite side as the leg length increase

(leg length increase was always applied to the subjects’ left legs). The three lines represent the

different leg lengths added.
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Figure 4.4: Step Length for All the Conditions. (Bars Show Standard Error)

Step length asymmetry showed a statistically significant main effect on both the amount of

mass added, F(4, 165) = 2.9, p< 0.05, and size of leg length added, F(2, 165) = 15.3, p < 0.0001.

There was not a statistically significant interaction between the amount of mass added and the size

of the leg length added on the step length asymmetry, F(8, 165) = 0.29, p = 0.97.

Step length shows distinct non-overlapping trends for each of the leg length conditions,

as seen in Figure 4.4. Without any mass added, increasing the LLD causes an increase in the

asymmetry. Adding mass causes a change in the asymmetry, but to a smaller extent than the

LLD [64, 68]. When mass and LLD were tested together, the mass added to the opposite leg had

less of an effect than the mass added to the same foot as the LLD. The effect of change for the

combination seems to be more pronounced when they are on the same side as opposed to opposite

sides, which is also seen in the case of a big leg length change. However, in this case, the small

mass on the opposite side is slightly less asymmetric while the big mass and length change was

slightly more asymmetric. It is interesting to note that a small LLD and a large mass on the same

foot result in a symmetric step length. This indicates that there is a configuration for symmetry in

an asymmetric individual, but none of the other parameters are symmetric in that configuration.
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Figure 4.5: Step Time for All the Conditions. (Bars Show Standard Error)

Step time asymmetry showed a statistically significant main effect on both the amount

of mass added, F(4, 165) = 87.5, p < 0.0001, and the size of leg length added, F(2, 165) = 56.0,

p < 0.0001. There was not a statistically significant interaction between the amount of mass added

and the size of the leg length added on the step time asymmetry, F(8, 165) = 1.8, p = 0.08.

The curves for step time show a dissimilar trend as for step length, because the asymmetries

are flipped, as seen in Figure 4.5. A small addition in mass has a large magnitude of asymmetric

change and, unlike step length, the asymmetry changes in the same direction as the leg to which

the mass is added. Adding a small leg length shifts the pattern of asymmetry towards the right leg.

This is because the leg length alterations were always performed on the subject’s left leg. This

is opposite to the shift noticed in step length as it shifted towards left asymmetry. The change in

magnitude with a small mass on the opposite side is much larger than the change in the same side

for the small leg length condition. The curve becomes highly asymmetric with the big leg length

condition [64].
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Peak vertical force asymmetry showed a statistically significant main effect on both the

amount of mass added, F(4, 165) = 9.6, p < 0.0001, and the size of leg length, F(2, 165) = 22.6,

p < 0.0001. There was not a statistically significant interaction between the amount of mass added

and the size of the leg length added on vertical force asymmetry, F(8, 165) = 0.53, p = 0.84.

The plots for the vertical peak ground reaction forces shift towards the right asymmetry

with an increase in leg length, seen in Figure 4.6. Previous research has shown that the addition

of asymmetric mass at the ankle caused a decreased single support time and increased swing

time [106]. This is similar to Figure 4.5 where the asymmetry of step times shift towards the

leg the masses were added. The condition with no added leg length has an interesting trend where

on both legs the small mass seems to be more asymmetric than the large mass condition. This is

seen again on the same side condition with a small change in leg length. Although the flattening

out of the asymmetry at larger masses, this may indicate a change in the compensation mechanism

when walking. When the leg length and mass were on opposite legs with the small leg length

condition, the asymmetry of gait was proportional to the mass. Any change in leg length of the

same side mass loading condition is more symmetric than the opposite side loading condition.

When a large mass is added to the same side condition it results to be more symmetric than no

mass for both leg length changes [50, 68].

Pushoff force asymmetry showed a statistically significant main effect on the amount of

mass added, F(4, 165) = 137.0, p < 0.0001, but not on the size of leg length added on pushoff

force asymmetry, F(2, 165) = 1.35, p = 0.26. There was not a statistically significant interaction

between the amount of mass added and the size of the leg length added on pushoff force asymmetry,

F(8, 165) = 1.44, p = 0.18.

The peak push off forces showed little change when the leg length was increased, seen in

Figure 4.7. There is also research showing an increase in vertical force asymmetry proportional to

the height of the leg length change [50]. This can be seen in Figure 4.6 with the no mass condition

the asymmetry is clearly moving towards the right leg which in this case is the unaltered leg. The

normal and small leg length change condition have an extremely similar pattern where the small
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Figure 4.6: Peak Vertical Force for All the Conditions. (Bars Show Standard Error)

leg change curve is slightly offset towards the right leg. The big leg length follows a similar trend

for the same side mass conditions, but for the opposite mass condition, the big leg length change

was more symmetric than the other two condition. This is because of the opposite effects of mass

on one leg and a drastic increase in leg length on the other. Other interesting aspects to note are

that the changes from no mass to small mass is much larger than the change from small to large

mass for all leg length changes [25, 107].

Braking force asymmetry showed a statistically significant main effect on both the amount

of mass added, F(4, 165) = 137.0, p < 0.0001 and on the size of leg length added, F(2, 165) = 4.1,

p < 0.05. There was not a statistically significant interaction between the amount of mass added

and the size of the leg length added on the braking force asymmetry, F(8, 165) = 0.66, p = 0.73.

Braking force curves for all leg length conditions follow the same pattern with an offset

towards the right with each alteration, as seen in Figure 4.8. Changing leg lengths has been shown

to affect plantar flexion in the opposite limb thus indicating a higher push off force and higher

quadricep activity in the altered leg [24, 25]. This can be observed in Figure 4.7 where the push
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Figure 4.7: Peak Push off Force for All the Conditions. (Bars Show Standard Error)

off force with change in leg length shifts towards the right because the leg lengths were changed

on the subject’s left leg. The increased quadraceps activity may also explain the asymmetries

caused by the other parameters, especially spatial and temporal changes. On the same side mass

loading condition, the small and large mass conditions are progressively more symmetric with the

change in leg length compared to the normal leg length curve. This is reversed in the opposite

mass loading condition, and it can also be seen that the deflection of asymmetry is larger with the

leg length change. This seems to be a linear relationship in the opposite loading condition and an

inverse relationship in the same side loading [64].

There are overall trends in the direction of the asymmetric change that seem to be dependent

on the mass loading condition. The asymmetry in step length follows a different trajectory in both

loading conditions when compared to the other four biomechanical parameters. That said, for the

same side mass loading condition, the addition of a small mass drives both leg length conditions

to be more symmetric. In the case of step length and peak vertical force, the addition of a big

mass on the same side drove both leg length conditions to be more symmetric than the small mass
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Figure 4.8: Peak Braking Force for All the Conditions. (Bars show standard error)

condition. However, the step time, peak push off, and braking force became more asymmetric with

the addition of the big mass on the same side condition.

The trends for the opposite leg mass loading show that the curves become more asymmetric

with the addition of mass except for a few curves in step length and peak vertical force. The

pattern seems to be that the normal leg compensates by generating large forces to maintain the gait.

This is confirmed in one study that found an increase in joint kinetics during gait with leg length

asymmetry [105]. The addition of mass on the opposite side of a small leg length increase improved

symmetry of the step length compared to a no mass condition. There is a slight improvement with

the small mass and large leg length change in the opposite combination, but when a big mass is

added the step length becomes more asymmetric. When a large mass is added to the opposite

leg at the normal leg length, it is slightly more symmetric than the addition of small mass. All

other curves than the anomalous ones discussed above have a general trend of becoming more

asymmetric with the increase in mass added to the opposite side.
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The results indicate that there is a configuration for symmetry in an asymmetric individual,

but none of the other parameters are symmetric in that configuration. For example, step length is

close to symmetry when the big mass and small leg length were added to the same leg, but this

resulted in a highly asymmetric step time, vertical, push off, and braking forces. This is backed by a

preliminary study exploring the interaction between LLD and addition of mass, which showed that

there were significant changes in parameters between leg lengths changes and kinetics associated

with these configurations [75].

There is a statistically significant difference between no mass and the big mass in all

measures, with the exception of step length and vertical force on the opposite condition [73].

Step time and propulsion forces have the same pattern for significances. Braking forces show

significance between big and small masses in both opposite and same side conditions.

There is statistical significance between all three leg length conditions for step length and

time. There is no statistical significance between all conditions for propulsive forces. Vertical

forces show statistical significance for the normal and large leg length condition and for small and

big leg lengths. Braking forces only display significance between normal and large leg length.

4.5 Discussion: Effect of LLD and Addition of Distal Mass

An important finding from this experiment is that there is no significant interaction effect

between the addition of mass and leg length for all gait parameter asymmetries, Table 4.3 (f).

I initially expected interaction between these mass and leg length alterations because they both

affect the gait patterns, but in different ways. There was significance for all parameters for mass

effect and leg length with the exception of propulsion forces. These results imply that the addition

of mass will have the same gait change regardless of whether there is a LLD or not and similarly

for the addition of a LLD with an added mass on one side. Interaction effects may be found

with larger perturbations, but the magnitudes used here span the range of asymmetries typically

seen [42, 99, 109, 119]. The results of this study contain evidence that differences in asymmetric

gait patterns can drive some gait parameters to symmetry while causing the inverse effect on the
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rest of the paramaters. This shows that a balance of multiple gait parameter asymmetries might

be beneficial clinically. Designing rehabilitation protocols with this in mind will help improve the

quality of gait patterns post training.

The results show there are configurations where one parameter is symmetric in an asym-

metric individual. For example, step length is close to symmetry (0.075%) when a big mass and

small leg length were added to the same leg, but this resulted in a highly asymmetric step time (-

5.4%), vertical (-1.78%), propulsion (-29.24%), and braking forces (-13.61%). This is consistent to

other studies exploring LLD and addition of mass, which found significant changes in parameters

between leg lengths and kinetics associated with these configurations [75, 116]. The same side

conditions tend to have the symmetric parameters more so than the opposite side conditions.

With no mass added, the forces show an approximately linear increase in their asymmetry

with leg length change. In the no-mass condition, the unaltered leg compensates by generating

large forces to maintain the gait, Figures 4.6, 4.7& 4.8. The increase in forces has been observed in

prior studies with simulated LLD [105, 118]. However, subjects with a natural LLD tend to exhibit

more force on their longer limb [4, 24]. I believe this difference in behavior can be attributed to

the adaptation period of simulated and natural LLD subject populations.

Subjects with LLD and amputees with shorter prosthetics have smaller step times on their

shorter limbs compared to longer limbs [24, 96]. This is not consistent with my findings. The

step times show a linear increase with change in leg length towards the shorter limb. However,

the same studies also found subjects with LLD take smaller steps with their shorter limbs. This

does correlate with my findings. The general behavior of the subjects with simulated leg length

is to spend more time on their unaltered limb and use that leverage to swing their altered limb to

maintain the stability required for their gait on a constant velocity treadmill. They also spend less

time on their altered limb and quickly switch to their unaltered limb.

Compensatory motions influence gait asymmetries with mass and leg length alterations.

This is clinically relevant because patients with impairment tend to adapt with compensatory move-

ment. This results in long term effects such as chronic back pains in amputees with asymmetric
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prosthetic lengths [96]. Adding mass to prosthetics increase step length and swing time asymmetry

of the prosthetic compared to the intact limb [68]. Amputees swing their prosthetics out and hence

have larger step length and swing time. Able body subjects tend to take smaller steps and spend

more time on the altered limb to conserve energy while taking longer steps with the unaltered limb.

Long term effects of these gait alterations may lead to completely different gait mechanics than

reported in the results. This is because over a long term subjects tend to use different compensation

strategies than the short term tested for this research.

The results of adding both leg length and mass demonstrate that driving one of the gait

parameters to symmetry will cause the other gait parameters to become more asymmetric. There

are instances where a gait parameter can be symmetric when walking with asymmetric height and

weight, but I did not find a configuration where several of the measured gait parameters became

more symmetric in an asymmetric individual. Although there is a statistically significant effect

between the addition of mass and leg length, there was not a significant interaction between the

mass and leg length change. The kinetic and temporal parameters exhibit higher asymmetry on

the shorter limb for leg length condition while the spatial parameter shows that asymmetry moves

towards the altered leg. Similarly, the addition of mass shifts the trend towards the affected leg

in the temporal and kinetic parameters but they affect the opposite leg spatially. Finally, although

there was no statistically significant interaction effect, this study has shown the behavior of multiple

gait parameters. This gives an overall perspective of the effects of LLD and addition of distal mass

in multiple perturbations.

4.6 CGAM to Analyze Multiple Physical Effects

Symmetry in gait rehabilitation is used to evaluate the quality of an individual’s gait.

Symmetry has also been used as a metric to measure the improvement of gait patterns due to

intervention [34, 77]. Inter limb symmetry of post stroke patients is used to determine the walking

patterns after training on a split-belt treadmill [95]. CGAM offers a method to combine multiple

gait parameter asymmetries. The rationale behind this method is to offer a single measure for
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the overall quality of a gait pattern. Using symmetry as a measure helps to homogenize different

types of gait parameters such as spatio-temporal, kinematic, and kinetic variables. This uniform

dataset then can be combined to be used as a metric of overall symmetry. CGAM score and overall

asymmetry are directly proportional, i.e, higher CGAM score indicates higher overall asymmetry

while a lower CGAM score indicates smaller overall asymmetry. CGAM is also relative to the

number of gait parameters used to calculate the CGAM score, for example, a five parameter

analysis cannot be compared to a eleven parameter analysis. Finally, CGAM is also relative to the

type of variables used in the analysis, for example, a five parameter analysis of spatio-temporal and

kinetic asymmetries cannot compared to a five parameter analysis of spatio-temporal and kinematic

asymmetries.

4.6.1 Methods: Formulation

Physical changes such as leg length discrepancy, the addition of a mass at the distal end

of the leg, the use of a prosthetic, and stroke frequently result in an asymmetric gait. The metric

presented here has the potential to help categorize and differentiate between multiple asymmetric

gaits. CGAM is based on Mahalanobis distances, and it utilizes the asymmetries of gait parameters

obtained from motion capture and force data recorded during human walking, calculated using

Eqn. 4.1. The gait parameters that were used in this analysis represent spatiotemporal, kinematic,

and kinetic parameters. This form of a consolidated metric will help researchers identify overall

gait asymmetry and to improve rehabilitation techniques to provide a well-rounded gait post train-

ing. The CGAM metric successfully served as a measure for overall symmetry with 11 different

gait parameters and successfully showed differences among gait with multiple physical asymme-

tries. The mass at the distal end had a larger magnitude on overall gait asymmetry compared to

leg length discrepancy. Combined effects are varied based on the cancellation effect between gait

parameters. The metric was also successful in delineating the differences of prosthetic gait and

able-bodied gait at three different walking velocities. Aim 3 and 4 can be fulfilled using this metric

to define an overall achievable symmetry using rehabilitation techniques.
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To further describe how the CGAM metric combines the gait parameters into one measure,

the 11 gait parameters are shown in Figure 4.9 with their respective CGAM score for four of

the gait alterations. An important aspect for interpreting this metric is the covariance of the

asymmetry matrix, which serves to weight the measures based on how much variability is present.

From Equation 4.2 it is clear that the covariance of the data plays a major role in calculating the

Mahalanobis distances from ideal symmetry. The measures that have more variability get weighted

less and more consistent measures are weighted more heavily. These weights generally account for

the variations in magnitudes across all the parameters. For example, push off and braking forces

tend to show much higher magnitude asymmetry than other measures, but they also show more

variability; scaling them based on their variability makes the influence comparable to the other

measures.

Percentage o f Asymmetry =
Right �Le f t

1
2 ⇤ (Right +Le f t)

(4.1)

CGAMDistance =
p

(Data)⇤ inv(S)⇤ (Data)0 (4.2)

Modified CGAM =

s
(Data)⇤ inv(S)⇤ (Data)0

Â(inv(S))
(4.3)

where,

• Modi f ied CGAM Distance = Weighted Distance from Ideal Symmetry

• CGAM Distance = Mahalanobis Distance from Ideal Symmetry

• Data = Matrix with n columns (11) and m rows (Number of Steps)

• S = Covariance of the Data.

I have updated the formulation to Equation 4.3 from Equation 4.2. The new formula works

similar to weighted means. In this case the weights are inverse covariances that are multiplied
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across the data set in the numerator, Equation 4.2. To balance the influence of the inverse of

covariance it is divided by the sum of the inverse covariance matrix, Equation 4.3. This change to

the formulation make the modified CGAM to represent the scores closer to the percent asymmetry

while still serving as a combined measure of all the gait parameter asymmetries.
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4.6.2 Results: CGAM Scores for Multiple Physical Changes

Figure 4.9 shows the comparison of two different systems in overall gait asymmetry be-

tween a 3D printed biomimetic prosthetic knee [87, 88] and an Ossur Total knee [89]. The

representation shows the 11 gait parameter asymmetries on the left that are combined using CGAM

to represent overall asymmetry on the right. Notice, that the pattern for both systems in terms

of asymmetry are the same as the step time, and knee angles express left asymmetry (positive)

while the rest of the parameters express right asymmetry (negative). This is because the data

was collected on a single amputee walking on two different prosthetic knees. The magnitudes

and variances of asymmetry affect the combination of all the parameters as they are weighted

by the inverse of their covariances to find their distances in 11-dimensional space. CGAM was

also used to characterize the differences in overall gait asymmetry between gait with the addition

of leg length, shown in Figure 4.10 (a), and distal mass and in the classification of gait with

prosthetics at three different speeds testing different socket technologies, shown in Figure 4.10

(b) [10]. This shows the diversity of gait patterns that can be analyzed using the CGAM metric.

CGAM streamlines the understanding of the overall asymmetry of a gait pattern, thus, enabling

easy classification.

Machine learning has been used in data-driven industries to find patterns in large amounts

of disparate datasets. The two datasets that were collected during this study represent gait with

multiple asymmetrical changes and hence, can be used to find patterns. For this study, the LibSVM

library [12] was used because it is easy to implement and it is widely used for research data. The

machine is trained using labels and a training dataset. The labels are long vectors with a single

number and the training datasets are ground truths. In the case of this study, the labels were 0 and

1. Label 0 was used for the perfect symmetry which is a zero matrix with 11 columns and multiple

rows. Label 1 was used for training asymmetry data. Figure 4.11 shows the results of grouping

predictions from 2 different asymmetry training datasets.

The pattern of the LibSVM grouping Index seen in Figure 4.11 (a) is very similar to the

pattern of the CGAM Mahalanobis distance in Figure 4.10 (a). Although the specific values cannot
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be compared directly because the modes by which they arrive at the results are inherently different,

the trends highlight the differences between these two methods. The CGAM metric uses a simple

Mahalanobis distance calculated from ideal symmetry while the more complex machine learning

metric groups the data based on training datasets. LibSVM is not as reliable at this stage for

being considered as a gait asymmetry metric because, based on the training datasets, the results

vary substantially. This can be seen by comparing Figure 4.11 (a & b) where the training datasets

were different and the grouping predictions are completely different. This can be attributed to the

different asymmetries present in the SS data and the weight/LL datasets. CGAM does not get

affected by these differences and offers a more objective metric that can be used to classify the

asymmetric changes. Another problem with Machine Learning as a metric is the requirement of

large datasets.

Analyzing multiple physical asymmetries in one method requires a special form of metric.

This is because every perturbation of physical change that impairs an individual’s gait has to be

accounted for and kept track of following clinical procedures. The consolidated metrics such as

CGAM and Machine learning can be quantitative data analysis tools that can help researchers
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Figure 4.11: Machine Learning (LibSVM) Grouping Metric Using Two Different Datasets for
Training. (a) Uses the Asymmetry Data for Walking with Stroke Simulator (b) Uses the LL-S-W-
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keep track of an individual’s overall gait asymmetry. These metrics can be obtained using all

gait asymmetry parameters such as spatiotemporal, kinematic, and kinetic or by using subsets and

combinations of any or all of these parameters. This versatile platform allows researchers to have

many options for generating metrics to represent the progress or regression of an individual over a

period of training and time.

4.6.3 Discussion: Relationship of CGAM and Multiple Physical Asymmetries

The results discussed above show that the metric is able to successfully catagorize the

extent of asymmetric changes caused by different perturbations. For example the CGAM scores

for walking with the SS, which is designed to cause asymmetric gait, has a significantly larger

value compared to the value that was gathered for gait immediately after the device was taken

off. The after-effects of the SS are also more asymmetric than a normal gait pattern, which shows

that the individuals adapted to the SS. Classification of gait based on overall symmetry will help

clinicians keep track of a subject’s progress, such as pre and post physical therapy regiments.

The SS can be examined as an impeding exoskeleton. Hence, the gait with and after the SS is

asymmetric overall. Conversely, in robot-assisted locomotion therapy the outcomes are expected

to be more symmetric [65]. CGAM could provide researchers the tools to measure the overall
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Figure 4.12: Comparing Variation of Mean, Standard Deviation, and CGAM Metric among
Perturbations. (a) Normal Walking without any Alterations, (b) Walking with SS or the Variable
Stiffness and Damping Knee Orthosis, (c) Walking with Big Leg Length and No Weight Addition
at the Ankles, and (d) Walking with Big Leg Length and Weight
(Legend: SL - Step Length, ST - Step Time, GRF - Ground Reaction Forces, PF - Push Off Forces,
BF - Braking Forces, KA - Knee Angle, AA - Ankle Angle, HA - Hip Angle, AM - Ankle Moment,
KM - Knee Moment, and HM - Hip Moment)

change in gait asymmetry and modify their rehabilitation techniques to induce better gait patterns.

This approach is different from prior research practices that limited their study to either spatio-

temporal, kinematic, or kinetic data.

Another approach is analyzing an individual’s gait parameters separately. This method

could reveal insights on specific comparisons, but the complexity increases with the number of

gait parameters. It is difficult to determine if the gait has improved when separately examining

11 parameters. The CGAM could make this evaluation easier since it can be used to represent a

range of gait parameters, and is not just limited to the 11 parameters that were used in this study.
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Figure 4.12 shows the means and standard deviation of the 11 gait parameters. The patterns of gait

parameter asymmetry for each of the perturbation is different. The magnitude and the direction

(left or right asymmetry) of the gait parameter asymmetry influence the magnitude of CGAM

score. The subsets of the gait parameters can be made to fit the requirements of the clinicians

such as reporting on improvements in only spatiotemporal parameters or only in kinematics. For

example, in a prior study with CGAM, only 5 gait parameters were used to analyze the data [86].

The parameters were step length, step time, vertical forces, push off forces, and braking forces.

Using these five asymmetry parameters, the CGAM was able to classify the different perturbations

of leg length and addition of masses on separate legs.

Consolidated metrics such as CGAM and Machine Learning offer a unique and simplified

perspective into categorizing gait data between multiple asymmetric datasets. CGAM has the

potential of serving as a benchmark in representing overall gait asymmetry using multiple different

parameters. The multidimensionality that CGAM offers makes it versatile and as shown in this

dissertation I can assess multiple gait patterns with different causations. These metrics have to

be field tested in clinical trials in order to be formally proposed for clinical use. It is important

to remember that these metrics could direct researchers to help patients achieve a well rounded

gait. A well rounded gait can be characterized as a sustainable gait that an individual adopts that

has the least overall asymmetry, not just a decrease in one parameter. Some parameters would

remain asymmetric so that other parameters could become closer to symmetry. In case of an

individual who is physically asymmetric, this would mean adopting a gait and posture that will

have a balance between all the gait parameters. This adaptation of a well rounded gait will help a

physically impaired individual to sustain a long-term gait that may not necessarily be as symmetric

as an able-bodied gait, but it is subjectively beneficial to their specific physical asymmetry. A well

rounded gait will alleviate long-term problems caused by asymmetric forces and moments acting

on the individual’s body.

In this study the 11 parameters were chosen because they represent important gait parame-

ter information and have clear symmetry values between each limb. With both metrics it is clearly
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seen that the addition of mass at the distal end has a larger effect on the overall symmetry than

leg length discrepancies. The combined effect of leg lengths and mass addition did not reveal

a clear pattern but the results were as expected in most cases. For example, the combination of

big leg length and mass had a slightly larger effect than small mass and leg length. However, the

combination of a small leg length and big mass had a lot more deviation than big leg length and big

mass. This is caused by the cancellation effects between gait parameters, which in turn resulted in

a larger or smaller CGAM value.

The prosthetic gait at the three different speeds showed that the overall symmetry improves

with increases in speed. It has been shown in literature that amputees achieve better spatio-

temporal and kinematic symmetry at higher speeds, but at the expense of kinetic symmetry which

can cause long-term degeneration effects [78]. A bigger patient population is required in order to

gather all variations of prosthetic gait and leave that to future studies.

The CAREN is a versatile device that was used to collect all the data for this study and

has been used in other similar studies [74, 83]. To further understand the effects and dynamics

of physical asymmetries, the split-belt treadmill can be used to exaggerate asymmetries. Split belt

treadmills are used to rehabilitate gait affected by hemiplegia by having the treads move at different

velocities. This exaggeration of hemiplegic gait temporarily restores the individual’s gait closer to

symmetry. However, successfully returning an individual’s gait to spatio-temporal symmetry does

not necessarily guarantee an overall effective gait with a healthy ratio of symmetry between all gait

parameters. To further explore how physical asymmetries combine, the split-belt treadmill could

be used in conjunction with an added mass and/or LLD.

Analyzing multiple physical asymmetries in one platform requires a special form of metric.

This is because every perturbation of physical change that impairs an individual’s gait has to be

accounted for and kept track of following clinical procedures. The consolidated metrics such as

CGAM and Machine learning can be quantitative data analysis tools that can help researchers

keep track of an individual’s overall gait asymmetry. These metrics can be obtained using all gait

asymmetry parameters such as spatio-temporal, kinematic, and kinetic or by using subsets and
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combinations of any or all of these parameters. This versatile platform allows researchers to have

many options for generating metrics to represent the progress or regression of an individual over a

period of training and time.
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CHAPTER 5: CLINICAL TRIALS

Experiments involving asymmetric rehabilitation techniques were conducted on subjects

with transfemoral amputation and stroke. The effects of asymmetric knee height on unilateral

transfemoral amputee and able-body subjects using prosthetic simulators was evaluated. Analysis

was performed on the gait parameter data collected on transfemoral amputees who completed a

split-belt treadmill training protocol. Stroke subjects were evaluated on the GEMS which exag-

gerates the asymmetry of one leg to help in the overall rehabilitation. The gait analysis from

the subjects was used to determine the effects of the asymmetric rehabiliation techniques. Clinical

evaluation measurements such as Timed Up and Go (TUG), six minute walk tests, and gait velocity

collected on the individuals with stroke, were also collected for this study. Further, the data from

all three experiments was also used to estimate the overall asymmetry scores using CGAM.

The information of all the studies described in this chapter are summarized in Table 5.1.

There are three major experiments that are presented in this chapter. The methods, results, and

discussion of each experiment is explained. The first experiment evaluates the effects of asymmet-

ric knee height on a transfemoral amputee and able-body subjects with prosthetic simulators. This

experiment is designed to bring about symmetry from an asymmetric system corresponding to Aim

1 and it gives a glimpse into the relationship between gait symmetry and function corresponding

to Aim 4. This experiment is aimed to show evidence that simple asymmetric changes made

to prosthetics can result in better overall symmetry. I also explore the combination of distal

mass in combination of distal mass and asymmetric knee height on a transfemoral amputee. The

asymmetries of eleven gait parameters which include spatio-temporal, kinematic, and kinetic types

are analyzed. The differences in kinematics for both transfemoral amputee and able-body subjects
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Table 5.1: Experiments Presented in the Chapter.

Experiment Subjects IRB Funding Source Publications
Asymmetric Knee Height

Prosthetic Simulator 5 Male # Pro00016724 NSF Ramakrishnan
1 Female [83]

Transfemoral Amputee 1 Female # Pro00026445
Split Belt Training⇤1

Transfemoral Amputee 1 Female # Pro00017820 RFA OPERF Kim et al.
1 Male 2014-SGA-1 [55]

GEMS Training
Individuals with Stroke 2 Female Western IRB Moterum Kim et al.

4 Male #20140915 Technologies [54]
⇤1 I did not help with data collection, but was allowed access to relevant data by Dr. Kim for the

purposes of this dissertation

on prosthetic simulators are also described. Finally, the CGAM scores are calculated for all the

different gait patterns and the results are discussed.

The second experiment presented in this chapter is gait adaptation patterns of transfemoral

amputees after split-belt treadmill training. This experiment is based on the same split-belt tread-

mill protocol applied on individuals with stroke [93]. Two subjects, male and female, underwent

a two week training protocol. The data is collected on a Protokinetic zeno walkway. A total of

four data sets were collected on each subject that were collected before training, after first week

of training, after completing training, and a follow up after two months. The data presented in this

chapter was analyzed using CGAM. Further, I also calculated the correlation between the CGAM

scores and each of the gait parameters. This experiment corresponds to Aims 1,2, and 4 as it

explores a simple asymmetric means to result in an overall symmetric gait. The dataset is used to

validate the use of CGAM as an index of overall asymmetry. It also shows the relation between

gait velocity and gait symmetry.

The third experiment is a clinical evaluation study of the GEMS on individuals with stroke.

I worked with Dr. Kim and Dr. Reed on the clinical trials of the Gait Enhancing Mobile Shoe

(GEMS). Clinical trials offer a new perspective on the requirements for rehabilitation. It gives a
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glimpse into the standard practices and the potential gaps in technology that can make rehabilitation

techniques more effective. The data that was collected during the clinical trials is used to validate

important characteristics of gait asymmetries in patients with physical impairments. The data is

analyzed using conventional metrics and statistical analysis as well as the CGAM metric. This

analysis is carried out to correspond with Aim 2 to validate CGAM clinically.

GEMS emulates a split-belt treadmill but it is worn by the subject who walks overground.

The GEMS aims to improve spatial and temporal symmetry similar to split-belt training. This

chapter describes the methods of the experimental protocol and the results obtained via the Pro-

tokinetic zeno walkway. Spatial, temporal, and kinetic gait parameter asymmetries were analyzed

for the results. The CGAM scores for all the trials were also calculated using the gait parameter

asymmetries. Clinical measures such as Timed up and Go (TUG), six minute walk test (6MWT),

and Gait velocity were collected for this study. The goal of this analyzes in regards to this

dissertation is to validate the CGAM scores with the clinical measures, which is directly related

to Aim 2. In order to validate CGAM I find r2 correlation between the clinical measures and

the CGAM scores. Further, I also find the r2 correlation of clinical measures and individual gait

parameters to analyze underlying relationships. This study is also directly related to Aim 1 and

4 because it uses a simple asymmetric device to alter gait to improve overall asymmetry. I also

discuss the relationship

5.1 Methods for Experiments with Prosthetics

5.1.1 Effect of Knee Height in Transfemoral Prosthesis

Prosthetics offer a perfect platform to test different gait dynamics because they can be

modified to have various joints locations, weights, and leg lengths. The human legs can be modeled

as a double pendulum system and the knee forms the integral joint in this system. The location

of the knee and the mass of the shank both contribute to the dynamics of the system. Previous

research has shown that two dissimilar systems can exhibit symmetric motion and a prosthetic
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Figure 5.1: Prosthetic Simulator with Different Knee Heights.

with a lower knee height exhibits better overall symmetric gait than a prosthetic with similar knee

height to the normal leg [30].

5.1.2 Prosthetic Simulator

This experiment is an extension of a previous study [83]. The prior experiment was a

evidence of concept and had only 3 subjects tested on 3 different knee height conditions [85].

The current study for this dissertation had 6 subjects with 3 different knee height positions. An

example of the knee height changes is shown in Figure 5.1. The positions range from 1 - 40%

asymmetry of the subject’s knee height. This range of asymmetry in knee height was chosen based

on a perception trial conducted using simulated gait videos based on PDW models. The research

showed that knee height discrepancy was perceived to be higher when the knee height difference

is above 26% [32].

Prosthetic simulators have been successfully used in other studies to simulate gait with a

prosthetic [22, 61, 110, 115]. Recruiting amputee subjects is difficult which lead to the use pros-

thetic simulators to help evaluating outcomes of altering prosthetic components. The prosthetic

simulator used for the experiment consisted of a knee brace (I-Walk), pediatric knee (ST&G 4 bar
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Figure 5.2: Able Body Subject Walking on Prosthetic Simulator.

mechanism), off the shelf prosthetic foot, and Aluminum piping for achieving the different knee

heights; Figure 5.2 and 5.3 show the different phases of walking with a prosthetic simulator.

This study was conducted under IRB # Pro00016724. The subjects were tested on the

CAREN system where the kinematic and kinetic data was collected to aid in the calculating the

various biomechanical parameters. The kinematic data was recorded using reflective markers

placed on the joints of the subjects.

5.1.3 Amputee Tested with Asymmetric Knee Heights

An extension of the prosthetic simulator study for the effects of different knee heights

is to test the alteration on a unilateral transfemoral amputee. The test was conducted on the

CAREN system under IRB # Pro00026445. The subject is a 37 year old high functioning unilateral

transfemoral amputee, shown in Figure 5.4 walking on the CAREN system. The amputee was

tested on 4 different perturbations with every change corresponding to 7% decrease in knee height.

Figure 5.6 shows the different perturbations that were applied to the amputee. Figure 5.5 shows

the subject on the CAREN with lowered knee height and the combination of lowered knee height

with addition of distal mass.

5.1.4 Combination Asymmetric Knee Heights with Distal Mass

An extension of this simple alteration to gait takes the form of adding masses to a prosthetic

to improve symmetry. In this study, I add a distal mass in combination with different knee heights.

This combination is a similar attempt to evoke better overall asymmetry such as the combination

of leg length and distal mass [73]. The alterations are necessary to understand the overall effects
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Figure 5.3: Able Body Subject Walking on Prosthetic Simulator with Gait Phases.

of asymmetric changes and to investigate if a combined effect of altering knee heights and distal

mass is beneficial to the prosthetic user. To gather the required data, the experiments are performed

on transfemoral amputees, Figure 5.6.

The experiment was conducted on a unilateral transfemoral amputee at three different knee

heights at 3, 6, and 9 cm. There were noticeable changes to gait as reported by the amputee,

Figure 5.5. The subject walked on the CAREN system at a predetermined speed. Speed was

determined with a 10 m walk test prior to the experiment. Due to the smaller and lighter shank, the

time from flexion to extension increased. This is because the leg behaves like a double pendulum

and the altered thigh link which is now longer and heavier swings much faster than the smaller and

lighter shank link. A distal mass of 1 kg was added in combination of every different knee heights.

This is interesting because the literature suggests that prosthetics that are lighter show better gait
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Figure 5.4: Transfemoral Amputee User on CAREN System.

symmetry [9]. The knee heights were fitted on the subject in a random order to avoid adaptation

effects.

5.2 Results: Prosthetic with Asymmetric Knee Height

The experiments were conducted to evaluate if a lower asymmetric knee height in a uni-

lateral transfemoral amputee improve the overall symmetry of the gait. The results in Figure 5.7

indicate that a lowered knee height can help bring some gait parameters to symmetry and make

others more asymmetric. For example, the vertical forces of the amputee with distal mass move

towards symmetry as the knee height lowers while the opposite effect takes place with knee angles,

Figures 5.7 (D & B). Since there are many parameters, it is convenient to also look at the CGAM

scores that combine all of these metrics; in essence, it determines if the gait is globally getting

more symmetric even if one parameter is not. The CGAM scores for each gait pattern are shown

in Figure 5.7 (L).

Generally, the behaviors show that lower knee heights do make some gait parameters more

symmetric. There are exceptions where the alterations lead to higher asymmetries or show no

change; for example, the moments for the amputee with distal mass and the prosthetic simulator

show no change in peak vertical force asymmetry. In the case of using prosthetic simulators, they

showed distinct differences from the amputee and normal able-body gait asymmetry. This was

expected but generally the behaviors are not drastically different. This is also reflected in the

CGAM scores where lowering knee height clearly improves the overall asymmetry of the amputee
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Figure 5.5: Amputee with Different Knee Heights and Distal Mass.

without the distal mass. There is an improvement in the overall asymmetry with respect to the gait

with prosthetic simulators as well. However, this shows that the lowest knee height is not always

the best dynamically for gait patterns.

Figure 5.7 (L) shows the CGAM scores representing the overall symmetry of each pertur-

bation. The results show that the knee at the normal height has a score slightly larger than the

perturbation with the distal mass. A 3 cm drop makes the gait more asymmetric than normal but

the distal mass improves the overall symmetry to become slightly better than normal with the distal

mass condition. A 6 cm drop in knee height seems to be the most symmetric setting among the

lower knee heights. The addition of mass seems to make the 6 cm drop more asymmetric. The 9

cm drop is the most asymmetric perturbation and the combination of distal mass makes it slightly

symmetric and it is closer to the 3 cm drop in knee height. The subject walked again with normal

knee height and the dynamic changes seem to have had an effect on the gait to make it a lot more

symmetric.
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I also recorded the subjective opinions of the subject. The experiment with the 6 cm drop

increased the pressure in the socket and at the distal femoral end of the residual stump. When the

distal mass was added in combination to the 6 cm drop, the subject reported the terminal impact

of the knee just before heel strike. The subject personally did not prefer this but reported that

many prosthetic users do. Terminal knee impact is used by amputees to ascertain the position of

their prostheses at the end of swing so that they can trigger the necessary functions to aid in the

stance phase. The subject did not realize any change in dynamics with the 3 cm drop and the

CGAM scores reflect this in terms of overall symmetry. The 9 cm drop made the user perceive the

prostheses to be heavier than normal. This led the user to recruit more muscles and constantly fire

them to maintain stable gait. This effect became worse when the distal mass was added.

The joint angles for the amputee subject are shown in Figure 5.8. The largest deviation

of changes from normal patterns is seen at the hips. The subject compensates for the changes in

swing time due to the smaller moment arm at the shank, which is exhibited in the form of altered

hip angle patterns. The knee angles for both limbs display consistent patterns with little deviation

from the baseline knee angles. The peak knee flexion angles for the 6 cm decrease and symmetric

height with distal mass for the prosthetic are considerably smaller than the baseline prosthetic knee

flexion. This decrease is also seen in the sound side but not to the extent of the prosthetic which is

to be expected. The sound side ankle angles shows higher plantar flexion in the 6 cm asymmetry

while all other settings show a decrease compared to the symmetric setting. The ankle angles for
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Figure 5.7: 11 Gait Parameter Asymmetries and CGAM Scores.
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Figure 5.8: Joint Kinematics of Amputee with Asymmetric Knee Height.
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Figure 5.9: Joint Kinematics of Able-body Subjects Wearing Prosthetic Simulator with
Asymmetric Knee Height.
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the prosthetic side show higher dorsiflexion for the 3 cm asymmetry with and without distal mass

compared to the symmetric knee height. The plantar flexion of the ankle decreased with the change

in knee height. Hip abduction of the sound leg increases when the knee height is lowered except

for the case of 6 cm asymmetry with distal mass, in which case the peak abduction angle is lower

than baseline value. In the case of the prosthetic, the 3 cm and 6 cm asymmetries cause the peak

abduction angle to be larger than baseline. However, with the addition of distal mass, abduction

angles are lower than baseline and the 9 cm asymmetry without distal mass also shows a lower

abduction angle.

The able-body subjects walking with the prosthetic simulator were allowed to familiarize

themselves with the simulator in order to display stable gait. They were only permitted to practice

on the high knee height setting. Figure 5.9 shows the joint kinematics obtained for the prosthetic

simulator trial. No distal mass was added to this set of experiments because the additional distal

mass could further alter the dynamics of walking more than the alteration caused by the prosthetic

simulator. Hip angles for the sound side show a decrease in peak extension, whereas the prosthetic

side shows an increase in peak extension angles for the medium and low settings. There is an

overall decrease in the hip and knee flexion angles with lower knee height for both limbs. Ankle

angles showed larger dorsiflexion with the high setting, but the other settings resulted in no change

for the sound leg. Lower knee heights showed decreases in peak plantar flexion in the sound

leg. The prosthetic ankle showed lower dorsiflexion angles and no sign of plantar flexion. Hip

abduction increased with the medium setting on the sound leg, no change at the high setting, but

a decrease with the low knee height setting. Both abduction and adduction showed to decrease on

the prosthetic side.

5.3 Discussion: Prosthetic with Asymmetric Knee Height

Lowering the knee height of a prosthesis is counter intuitive in rehabilitation where the goal

is to achieve the physical ability prior to ones amputation. In a unilateral transfemoral amputation,

an individual loses their knee and ankle joints that are critical to walking, which renders them
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physically asymmetric. Rehabilitating physical asymmetry with symmetric prosthesis often leads

to spatiotemporal and kinetic asymmetries [38, 49]. This study shows that gait asymmetry can

be mitigated by asymmetric alterations such as lowering the knee height, adding distal mass, or a

combination of the effects.

Evaluating the different asymmetries and kinematics of the gait reveal that there are distinct

differences that arise due to lowering knee height. The most important of the effects being the

shorter moment arm which in-turn causes longer swing times from flexion to extension. Since the

study was conducted on a treadmill at constant velocity, the step time asymmetries do not change

with the different knee heights. However, the step length become more symmetric with the 3 cm

and 6 cm change in knee heights for the amputee. The prosthetic simulator at the highest and lowest

settings were more asymmetric than the medium knee height. The spatiotemporal parameters are

also visual indicators and, from Figure 5.7 (J-K), it can be seen that a lowered knee height pushes

the step length to be symmetric. Step time shows no change between baseline and different knee

heights in both amputee and prosthetic simulator gait.

Joint moments also do not show large deviations. Adding distal mass seems to consistently

make the moments slightly more symmetric in the amputee. The prosthetic simulator does not

show large changes except the medium setting is slightly more symmetric for the hip and ankle

moments. This behavior is observed again with the kinetics. Lower knee heights clearly make

the forces more symmetric and the addition of distal mass seems to improve it further. Although

the distal mass causes higher metabolic strain [68] on the individual, it seems to help balance the

asymmetric forces. Prosthetic simulator gait showed no visible deviation in asymmetry for the

kinetics. It is possible that combining a lower knee height with heavier shank may alleviate some

of the asymmetric forces that amputees experience in their gait.

Joint kinematics show differences in asymmetries while hip and ankle angles become more

symmetric the knee angles tend to be more asymmetric with lower knee height for the amputee.

In the case of the prosthetic simulator, the lowest knee height has more asymmetric hip and knee

angles but not in ankle angles. Joint kinematics are also visually perceived and this anomalous
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behavior is easily detected. Even if these patterns are better overall, there may be issues with the

perception of the gait patterns visually.

The hypothesis for this study originated from robotics with the PDW simulation models.

From a purely dynamic perspective from the PDW models it showed that a lower knee height

with an asymmetric mass distribution much like an amputee showed better spatiotemporal symme-

try [112]. This was evident in this study with step length, but step time did not show improvement.

I expect simple asymmetric changes in prosthetic design can bring about much better gait patterns

for amputees. Lowering the knee height by a few percent (under 26% of knee height) with a

slightly heavier shank may improve the kinetic symmetry. This is contrary to the pursuit of lighter

prostheses but optimizing and customizing asymmetric prosthetics has potential for better gait

patterns. More testing performed with a larger amputee population with and without weighted

prostheses would further determine if a combination of lowered knee height and addition of mass

can bring out better outcomes in terms of overall asymmetry and quality of gait.

5.4 Methods: Split Belt Treadmill Training for Transfemoral Amputees

This clinical trial uses a split-belt treadmill to correct the asymmetries in the gait of a

unilateral transfemoral amputee. This study was completed by Dr. Kim. This procedure is similar

to the split-belt therapy used for individuals with stroke. The reasoning behind this goes back

to the inherent physical asymmetry of an amputee which causes their gait to be asymmetric as

well. By forcing amputees to spend more time on their prosthetic, the study seeks to improve

spatiotemporal gait symmetry. The study also analyses the retention of gait when the amputee

adapts to over ground walking. The study uses a split-belt treadmill and a Protokinetic gait mat

to measure the kinematics and spatiotemporal parameters of the amputee’s gait. This study gives

insight into gait adaptation strategies of unilateral transfemoral amputees. I also study the effect of

spatiotemporal symmetry on the symmetry of double limb support and ground reaction forces.

The study was conducted over a period of two weeks with a 1 month followup testing.

Baseline gait data is collected prior to the split-belt training, then the data is collected again post
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Figure 5.10: CGAM Scores of Two Amputees Before and After Split Belt Training.

training, and finally the subject is tested after a month to check for retention of the training. Each

subject went through six training sessions on the split-belt treadmill based on the protocol followed

by Reisman et al. [91–93]. The split-belt sessions last 30 minutes to ensure complete adaptation.

The prosthetic side is slowed down while the sound side is sped up. This forces the prosthetic leg

to take a longer step compared to the sound leg. The resulting expected effect from this training

is to force the gait pattern to be more symmetric in the spatial and temporal parameters. Subject 1

was female and Subject 2 was male both under 40 years of age and both have their amputation on

the right side.

5.5 Results: Split Belt Treadmill Training for Transfemoral Amputees

The goal of implementing the split-belt treadmill training protocol for transfemoral am-

putees is to improve in better spatiotemporal symmetry. A previous publication by Kim et al. [55]

showed that there was definite improvement in the spatiotemporal parameters for both subjects.

All five gait parameter asymmetries became more symmetric post training. However, the effects

did not last over a long period of time. The results for the followup tests showed subject 1’s step

length and time became more asymmetric and subject 2’s step time became more asymmetric.
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Table 5.2: Modified CGAM vs Gait Parameter r2 Correlation for Amputee Data. (Bold implies
correlation that is mild or above))

Gait Parameter r2 (Subject 1) r2 (Subject 2) r2 (Combined)
Step Length Asymmetry 0.77 0.72 0.24
Step Time Asymmetry 0.13 0.01 0.16

Swing Time Asymmetry 0.33 0.93 0.63
DLS Asymmetry 0.00 0.66 0.03
GRF Asymmetry 0.014 0.87 0.01
Velocity (cm/sec) 0.32 0.92 0.018
6MWT (cm/sec) 0.96 0.99 0.36

The CGAM scores were calculated for the two subjects using the ground reaction force,

double limb support, swing time, step length, and time asymmetries. These parameters were

chosen based on the importance and availability of data. Figure 5.10 shows the CGAM scores

for both subjects. The post test scores show that the overall asymmetry of the amputee’s gait

patterns are lower than pre trial. This is consistent with the clinical assessment. To further assess

the validity of the CGAM scores, the correlation between the gait parameters and the CGAM scores

were calculated, shown in Table 5.2. Subject 2’s results show high correlation of CGAM scores

with all gait parameters. CGAM has a positive correlation with step length, step, and swing time.

It has a negative correlation with double limb support and ground reaction force. This is because

of the Equation 5.1 where the prosthetic side is subtracted from the intact side. Since, terminal

double limb support is used DLS tends to be negatively correlated to CGAM as it moves from a

high negative towards zero. Similarly, ground reaction force is typically lower on the prosthetic

side compared to the intact side.

100⇤
abs(Mprosthetic �Mintact)

0.5⇤ (Mprosthetic +Mintact)
(5.1)

Subject 1 showed high correlation with Step length, moderate correlation with swing time,

and weak correlation with step time asymmetry. Subject 1 did not show any correlation with

ground reaction forces and double limb support. Subject 2 did not show any correlation with
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step time but showed high correlation with all other parameters. Combining both subjects data

to find the r2 showed that there is no correlation between step length and CGAM. Step length

and time show weak correlation while double limb support and ground reaction forces show no

correlation with CGAM scores. Swing time asymmetry showed high correlation for all data points

vs CGAM scores. Gait velocity increased for both subjects over the course of the training. The

correlation between the gait velocity and the CGAM is moderate for subject 1 and high correlation

with subject 2. It was surprising that when the data was combined there was no correlation, and

indicates that the underlying correlation for each subject is different. 6MWT was also calculated

for the experiments for pre-test, post-test, and followup for both subjects. The r2 correlation of

CGAM with 6MWT showed high correlation for each subject, this is because there are only three

points in the plot. However, CGAM showed moderate correlation with the six data points by

combining both subjects.

5.6 Discussion: Split Belt Treadmill Training for Transfemoral Amputees

Transfemoral amputees often exhibit spatiotemporal asymmetry due to the lack of refined

control [102]. This is usually due to the passive prosthetics that do not offer active control and

propulsive assistance. The amputees tend to rely on their intact leg more and hence spend less time

on their prosthetic and in turn do not shift their load to the prosthetic. Training on the split-belt

essentially forces the amputee to spend more time on their prosthetic and shift more weight on to

the prosthetic. This was achieved by destabilizing the intact leg by speeding up the tread.

Double limb support, ground reaction force, swing time, step length, and time asymmetries

were analyzed from the gait. Out of the five gait parameter asymmetries four showed clear

improvement in symmetry for both subjects. Ground reaction force was inconclusive as one subject

showed improvement in symmetry while the other displayed higher asymmetry. More data from a

larger subject population will show better trends in regard to the behavior of ground reaction force

symmetry. GRF asymmetry is expected to become better because the subject is trained to shift
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more weight on their prosthetic limb. Gait velocity increased for both subjects consistently over

the training period. The subjects also showed retention of gait velocity after a long period [55].

The CGAM scores that were calculated for all four phases of the experiment showed

a similar behavior for the overall asymmetry of the gait patterns, Figure 5.10. There is a big

improvement of overall gait symmetry when the data was collected after the first week of training.

This also is corroborated by the individual gait parameters. The post training session data shows a

slight increase in asymmetry for both subjects. The followup data overall symmetry is inconclusive

as one subject shows improvement while others become slightly more asymmetric. However, even

becoming slightly more asymmetric in the post training session, both subjects showed overall

improvement in gait symmetry. Further, analyzing the correlation between CGAM that expresses

overall asymmetry and each gait parameter revealed that the combined data of both subjects have

moderate correlation with step and swing time and high correlation with swing time asymmetries.

It showed no correlation with ground reaction force and double limb support asymmetry. This

reveals that the overall asymmetry score of CGAM is moderately influenced by spatial characteris-

tics and has large influence contributed by swing time asymmetry. This is good because the swing

time asymmetry had large magnitudes and the behaviors for improvement or decline of symmetry

were also similar to the CGAM scores. This shows that gait parameters with large magnitude and

smaller variances have more influence on CGAM than small magnitude and large variances.

Gait velocity also showed no correlation when the data is combined, but it does show high

correlation with subject 2 and moderate correlation with subject 1. The CGAM scores also showed

high to moderate correlation with the 6MWT data. The correlation of CGAM with the different

gait parameters and the clinical measures such as 6MWT and gait velocity show that CGAM has

potential to be used as an index in analyzing gait patterns based on gait parameter asymmetries.

DLS and GRF asymmetries show inconsistant correlation with CGAM score which means that

either they do not have enough data points to correlate or they do not have a large influence on the

magnitude of the CGAM score.
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Individuals with stroke exhibit a loss of control due to neurological issues whereas am-

putees have a loss of control due to physical asymmetry caused due to the amputation. The

mechanisms for rehabilitation for stroke and amputees are different. Split belt treadmill training

for individuals with stroke helps to re-train their intact but damaged nervous system [93]. This is

different from retraining the coordination of transfemoral amputees with no neurological issues.

Amputees instead learn to spend more time and shift more weight on to their prosthetic side.

Individuals with stroke often do not retain their split-belt treadmill training [95]. This is because

of their inherent neuro-plasticity thresholds are changed due to the stroke which makes it difficult

for them to retain new information. The results for the split-belt training on amputees does show

retention for the first two weeks. Overall, both subjects also show retention of overall symmetry

when tested a month after training. This is consistent with the clinical measures as well.

5.7 Methods: GEMS Training

The GEMS can generate a motion to a foot that is capable of changing interlimb coordi-

nation while walking over ground, seen in Figure 5.11. The generated motion is similar to that

felt when walking on a split-belt treadmill, but while walking over ground where the sensory

information of the real-world task will be experienced. Six subjects with a unilateral stroke walked

on the GEMS for 12 sessions over 4 weeks with pre- and post-training tests. The results from this

ongoing study show that the subject’s step length and double limb support symmetry improved

following the training.

The Gait Enhancing Mobile Shoe (GEMS) is designed to change interlimb coordination

and strengthening the paretic leg of individuals with asymmetric walking patterns caused by stroke.

The concept of the GEMS is similar to that of a split-belt treadmill [92], but allows the individual

to walk over ground, which is hypothesized to help with long-term retention of the altered gait

pattern [29]. In addition, the GEMS can be manufactured for a lower price and can, thus, be made

available in more locations and could enable a home-based gait rehabilitation solution.
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Figure 5.11: GEMS Walk.

The GEMS is completely passive and uses spiral-like (nonconstant radius) wheels [31],

which redirect the downward force generated during walking into a backward force that generates

a consistent motion. By not utilizing actuators and fabricating the shoe using rapid manufactured

glass filled nylon, the GEMS weighs approximately 900 g. Small unidirectional dampers on the

front and back axels prevent uncontrolled motions. After the shoe stops moving backward, the

user toe-off, and springs attached to the axles reset the position of the wheels for the next step. The

front of the GEMS is able to pivot to more naturally conform to the user’s toe-off. The motion of

the shoe can be seen in Figure 5.11.

The experiment is based on protocol NCT02185404 as listed on ClinicalTrials.gov . Before

training, subject’s gait patterns are evaluated using a ProtoKinetics Zeno Walkway (ProtoKinetics,

Havertown, PA). They then complete 4 weeks of training 3 times a week under the guidance

of a physical therapist. Each of the 12 sessions includes 6 bouts of walking on the GEMS for

approximately 5 minutes with breaks between bouts. The subject’s gait is measured on Protokinetic

zeno walkway along with motion capture data before the training begins, this data will be referred

here forth as pre-test data. Then gait data is collected on the walkway without motion capture

every week starting the week after the first three training sessions, this data will be referred to as

midweek data. Their gait is tested again one week after the completion of the training protocol on

the walkway and motion capture data is collected, this data will be referred to as post-training.

All subjects agreed to participate in this study and signed a consent form that was approved

by the Western Institutional Review Board. Three subjects (4 male and 2 females), aged 57-74

years old with right hemisphere stroke, completed the training thus far and the length of time since
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stroke ranged from 1.2 to 5.4 years. Subject 6 was atypical compared to other subjects as he took

longer steps with his paretic limb. Therefore, the decision was made to fit the GEMS on his paretic

side. The logic being it would train him to take longer steps with his non-paretic leg and shorter

step with the paretic leg. Hence, balancing out the step length asymmetry which is the inverse of

the regular protocol.

5.8 Results: GEMS Training

Symmetry was calculated using equation 5.2 where M is one of the five measures shown

in Table 5.3, and a value of 0 indicates symmetry. The five measures comprise of step length, step

time, swing time, double limb support (DLS), and ground reaction forces (GRF). Comparisons

were made between gait evaluations conducted before training and after completion of training.

Subject 3 will not be included in all the analyses because the subject is an outlier for all gait

parameters which makes it harder to draw conclusions overall.

100⇤
abs(Mparetic �Mnonparetic)

0.5⇤ (Mparetic +Mnonparetic)
(5.2)

The results, summarized in Table 5.3, demonstrate that all subjects improved in step length

asymmetry, except subject 2. Similarly, except subject 4 all other subjects showed improved step

and swing time symmetry. Subject 3, 4, and 6 show display more asymmetry in double limb

support. Subject 2 is the only one who becomes more asymmetric with ground reaction forces.

These results are in line with the expected change in gait patterns based on split-belt treadmill

studies using the same number of training sessions [91].

Clinical measurements such as Timed Up & Go (TUG) and six minute walk test were also

collected for the study, Table 5.3. The TUG measures the time taken for an individual to stand

up from a seated position walk six feet, turn around, walk back, and resume a seated position.

The mark of improvement for this test is the subject takes less time after training than before

which is evident for subjects 1-4 and 6. Subject 5 was unable to complete this task due to other

issues. Subjects who completed the study showed improvement in TUG times. Six minute walk
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Table 5.3: Participant Clinical Results Pre and Post Training.

Measure Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6
Timed Up and Go - Pre (sec) 27.7 21.4 105.4 24.1 28.6 11.6
Timed Up and Go - Post (sec) 26.5 20.4 90.6 19.6 - 10.5
Six Minute Walk Test - Pre (meters) 144.0 150.2 33.6 149.4 137.9 404.2
Six Minute Walk Test - Post (meters) 144.5 182.6 42.4 161.1 - 430.5
Gait Velocity - Pre (cm/sec) 41.4 47.0 9.0 35.9 38.6 113.5
Gait Velocity - Post (cm/sec) 45.9 61.1 12.8 43.9 - 145.1
Cadence - Pre (steps/min) 56.1 87.0 59 88.0 83.7 106.6
Cadence - Post (steps/min) 66.3 97.2 57.5 94.1 - 118.8
Step Length - Pre (%) 19.3 7.2 261.5 40.8 18.4 11.6
Step Length - Post (%) 14.9 7.8 242.2 36.5 - 4.4
Step Time - Pre (%) 31.0 37.7 98.5 47.9 34.3 22.1
Step Time - Post (%) 24.5 33.1 95.4 52.4 - 6.2
Swing Time Asymmetry - Pre (%) 41.1 34.7 71.7 69.9 61.8 34.8
Swing Time Asymmetry - Post (%) 40.8 34.0 51.9 78.8 - 4.1
DLS Asymmetry - Pre (%) 29.8 42.1 107.6 21.1 21.9 15.8
DLS Asymmetry - Post (%) 14.0 31.2 109.8 22.7 - 20.0
GRF Asymmetry - Pre (%) 22.7 14.8 42.9 14.7 15.1 15.9
GRF Asymmetry - Post (%) 20.3 20.3 40.9 11.8 - 11.7
Modified CGAM - Pre (%) 26.7 23.2 103.3 53.1 29.1 14.8
Modified CGAM - Post (%) 23.3 22.7 110.7 50.4 - 7.1

test measures the total distance the subject can cover in six minutes. All subjects who completed

the trial showed improvement in the amount of distance they are able to cover. Parameters related

to clinical measures such as Gait velocity and Cadence also showed improvement for all subjects

except for subject 3 who showed a slight decrease in cadence post training.

All subjects displayed larger walking velocity post training, as seen in Table 5.3. Related

to this increase in gait velocity results in lower Timed up and Go times (secs), higher distance

covered during Six minute walk test (meters), and higher cadence (steps/min). Since SBT training

is performed on a treadmill, the majority of the studies do not evaluate the gait velocity of walking

over ground, so it cannot be compared directly. However, the SBT had almost no effect on double

limb support asymmetry, and the GEMS showed decrease of double limb support asymmetry

except in the case of subject 4 [54]. Step length and time asymmetry decreased for all subjects
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except subject 6, who was an atypical case since he wore the GEMS on the paretic side. Swing

time asymmetry increased for subjects 1, 4, and 6 while it decreased for subject 2 and 3. Ground

reaction force asymmetry decreased for all subjects except subject 6.

The joint kinematics for subject 2 and 4 are depicted in Figure 5.12 and showed mild

changes between pre and post training. There are no significant changes observed in the paretic

and non-paretic limb for the hip flexion/extension for both subjects. Hip abduction/adduction did

not show any changes for the paretic limb for pre and post training for both subjects. The non-

paretic limb displayed an increase in abduction post training for subject 4 while it did not change

for subject 2. The non-paretic limb showed an increase in ankle plantar-flexion after the training

while there was no difference in the paretic limb for subject 4. While subject 4 showed a large

increase in plantar flexion in the paretic foot post training and showed no changes in the non-

paretic foot. A small increase in peak knee flexion is also seen both limbs for both subjects.

The gait parameter asymmetries are shown in Figure 5.13. Subject 3 showed large devia-

tions in asymmetries in step length, double limb support, swing time, and ground reaction force

asymmetries and hence, is not included in the figure. This is reflected in the CGAM score where

subject 3 was clearly far deviated from the other subjects. The CGAM scores for all subjects

showed overall agreement with the changes in the gait parameters. Some CGAM scores reflected

the overall changes closer than others which is to be expected given the small sample size.

Subject 1 shows good improvement in step length asymmetry after the first week but

becomes more asymmetric after that but post-test shows the lowest step length asymmetry. Subject

1 shows a consistent decrease in step time and double limb support symmetry. Swing time asym-

metry remains almost constant through all the weeks and ground reaction forces show a decrease

in asymmetry the first two weeks followed by an increase in asymmetry. The CGAM scores that

represents overall asymmetry shows a pattern close to step and swing time symmetry with small

improvement in overall symmetry.

Subject 2 shows almost a constant step length asymmetry which is slightly more asymmet-

ric post-test. Step time shows lower asymmetry after the first week of training and continues till
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Figure 5.12: Joint Kinematics of Two Subjects Pre and Post-Test Using the GEMS.
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week three but is shows slight increase post-test which is still lower than pre-test asymmetry. A

similar behavior is seen in double limb support and swing time asymmetry. Ground reaction force

asymmetry for subject 2 increases after the first week of training, then improves in the second

week. However, it becomes worse the third week and post-test. The CGAM scores of subject

2 is lower than subjects 1, 4, and 5 due to the smaller magnitude of most of the gait parameter

asymmetries. It shows improvement over the midweek but becomes worse towards the end of the

training.

Subject 4 shows improvement after the first week but after which the asymmetries increase

for step length, step time, double limb support, and swing time asymmetry. Step length post-test is

lower than pre-test but the rest of the parameters with the similar pattern show larger asymmetry

post-test. Ground reaction force asymmetry consistently decreases for subject 4. The CGAM

scores represent the pattern seen in four of the gait parameters but the post-test CGAM is score is

lower than pre-test indicating a slight improvement in overall symmetry.

Subject 5 did not complete all of the GEMS training sessions. The pre-test and two

midweek data of subject 5 show improved symmetry in step length, swing time, double limb

support, and ground reaction forces. Subject 5 does show large asymmetry in the midweek. This

also has influence on the CGAM score which shows the overall asymmetry increases after the first

week of training with slight improvement over pre-test in the second midweek.

Subject 6 was atypical as he wore the GEMS on the paretic side. He showed improvement

is step length, step, and swing time symmetry through out all the weeks and had low asymmetry

in post-test. Double limb support remained fairly constant with a slight increase in asymmetry.

Ground reaction force symmetry varied midweeks but post-test showed lower asymmetry than

pre-test. CGAM shows a behavior of continuous improvement for subject 6 and he also possess

the lowest score overall.

The r2correlation between the CGAM scores and the gait parameters with the TUG, 6MWT,

and gait velocity clinical measures are shown in Table 5.3. Subject 3 was not considered for

the correlation because of the extreme variation in the gait parameter data. Table 5.4 shows
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Table 5.4: Clinical Data vs Gait Parameter and CGAM r2 Correlation. (Bold Implies Correlation
That is Mild or Above)

Gait Parameter TUG (Sec) 6MWT (m) Velocity(cm/sec)
Step Length Asymmetry 0.14 0.21 0.31
Step Time Asymmetry 0.23 0.53 0.63

Swing Time Asymmetry 0.29 0.43 0.57
Double Limb Support Asymmetry 0.03 0.14 0.10

Ground Reaction Force Asymmetry 0.26 0.14 0.13
Modified CGAM 0.22 0.41 0.51

Table 5.5: Modified CGAM vs Gait Parameter and CGAM r2 Correlation. (Bold Implies
Correlation That is Mild or Above)

Gait Parameter r2 (Pre & Post) r2 (All Weeks)
Step Length Asymmetry 0.93 0.81
Step Time Asymmetry 0.95 0.88

Swing Time Asymmetry 0.98 0.89
Double Limb Support Asymmetry 0.01 0.01

Ground Reaction Force Asymmetry 0.03 0.18

the complete list of r2 values for the gait parameters and CGAM. CGAM scores show a weak

correlation to TUG, moderate correlation with 6MWT, and gait velocity. Step time asymmetry

shows similar pattern of correlation with CGAM with a high correlation with velocity. Swing time

shows moderate correlation with all three clinical measures. TUG shows moderate correlation with

ground reaction force asymmetry while the other measures have weaker correlation with a high

correlation to velocity. Step length and ground reaction force show moderate correlation for all

three clinical measures. Figure 5.14 shows the CGAM vs the clinical measures. TUG and CGAM

show a positive slope for correlation which is the expected behavior as both metrics decrease with

improvement. 6MWT and gait velocity show negative slopes for correlation which is again the

expected behavior as 6MWT and gait velocity increase with improvement while CGAM decreases

with better gait patterns.
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The r2 values between CGAM scores and individual gait parameters were also calculated.

Table 5.5 shows the correlation values between the pre and post test data of each gait parameter

for all subjects correlated with the corresponding CGAM scores. This was important since the pre

and post test performance is more important clinically. However, it is also critical to analyze the

correlation for all the week’s data points for the gait parameters. It is interesting to note that swing

time, step length, and time show high correlation while double limb support and ground reaction

force asymmetry show no correlation. This is consistent with both the total data set containing all

the weeks of testing and when the data set consisted of only pre and post test data. Step length and

swing time showed lowered correlation for all weeks data compared to the just the pre and post

test data. Ground reaction force asymmetry showed a weak correlation with all weeks which was

interesting. Double limb support showed no correlation in both cases.

5.9 Discussion: GEMS Training

The GEMS is designed to improve step length symmetry of an hemiparetic patient [29].

The wearer of the GEMS has spatial context and optic/visual flow, of their surroundings during

training which helps them overcome their inherent neuroplasticity. The patient does not receive

this additional information that helps with retraining their body function during SBT training. This

results in the lack of retention of learned motor function after the SBT training [94]. This is also

an indicator that neuroplasticity of an individual with stroke may need more stimuli to successfully

relearn a certain task [18, 36].

The GEMS’s main application is as a rehabilitative device to assist patients in improving

gait and mobility that are suffering from a variety of ailments that induce hemiparetic related

mobility hindrances. The ability to treat hemiparesis will not only improve the physical, mental,

and emotional health of the patients themselves, but it will also benefit the quality of life of the

nearest relatives and caregivers and improve healthcare economics.The GEMS can also be used as a

transitional device which would allow it to serve as an intermediate step between the SBT training

and walking over ground. Another alternative for the GEMS is to function as a compensatory
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motion device, where it would compensate for a patient’s asymmetric motion. As a compensatory

motion device, the GEMS’s goal would no longer be rehabilitation, but rather to compensate for

incorrect gait and establish a more symmetric gait by decreasing the step length of the unaffected

leg. The training with the GEMS also encouraged the subjects to utilize their paretic limb. Hence,

it also pushes the subjects to take longer steps with their paretic limb.

To accurately discuss the results of this experiment, it is important to keep in mind that

subject three exhibited atypical gait pattern that resulted in extremely high asymmetries. Subject

six is atypical because he took longer steps with paretic limb and hence, the GEMS was fit on

his paretic limb which is the opposite of the protocol followed with the other five subjects. The

purpose of the GEMS is to improve spatial and temporal symmetry. During the training protocol

the subjects were also asked to shift more weight on their paretic limb in order to improve their

kinetic symmetry as well.

Comparing the asymmetry behavior of parameters helps understand the relationship be-

tween the different parameter asymmetries. This corresponds to the hypothesis of Aim 1: there

exists a balance of asymmetry between gait parameters. For example, for the data of midweek 1

most subjects show decrease in spatial and temporal parameters but have high ground reaction for

asymmetry. The reverse is observed in midweek 2 where most subjects show low ground reaction

force but high spatial and temporal asymmetry. Although not all subjects display the exact changes

and there were variation, it offers evidence regarding the balance of gait parameter asymmetry. A

large improvement in spatial and temporal characteristics portrayed a large increase in kinetic

asymmetry. Subject 4 shows a peculiar pattern as they get better in spatial and kinetic parameters

but get worse in temporal parameter. Subject 6 gets better in all parameters except double limb

support asymmetry, which may be attributed to wearing the GEMS on the paretic side.

CGAM scores calculated using the spatial, temporal, and kinetic parameters showed be-

haviors similar to the gait parameter asymmetries, Figure 5.13. However, it does not validate the

metric and hence, r2 correlations were calculated between CGAM and clinical measures. The

overall asymmetry measure represented by CGAM showed a weak correlation with timed up and
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go test. Gait parameter asymmetries also showed weak to moderate correlation with the clinical

measures. CGAM also showed moderate correlation with 6MWT and gait velocity which are

negatively correlated to CGAM. 6MWT and gait velocity also represent functional parameters

as they clearly show that the subject is able to cover more distance in six minutes and can also

ambulate faster. Having moderate correlation with these measures shows evidence that a measure

of overall symmetry which is used as factor for gait quality is related to gait function signified by

gait velocity and 6MWT. This findings offers some evidence to Aim 2, which aims to validate the

CGAM metric.

CGAM shows high correlation with swing time, step length, and time. This was consistent

when the only the pre and post test data was considered or all the data points were analyzed. This

means that these three parameters have similar behaviors to their CGAM scores while double limb

support and ground reaction force asymmetry have large variation in the data. However, when all

the data is considered ground reaction forces show a weak correlation to the CGAM behavior.
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CHAPTER 6: VISUAL PERCEPTION OF GAIT ASYMMETRY

This experiment is conducted to fulfill Aim 2. I seek to understand the capacity of an

individual’s visual perception to differentiate gait patterns. These gait patterns were generated

using the Unity game engine with a visually symmetric human model that is based on human

motion capture data. This is different from the previous research study conducted by Handzic et

al. [32, 33] that used a combination of symmetric and asymmetry passive dynamic walker models.

I also want to check the effect of physical alteration of gait perception. In this experiment, the sub-

jects view videos with different gait patterns and evaluate them based on symmetry and normality.

This visual classification will help in understanding how humans fundamentally perceive subtle

gait asymmetries. This information will also elucidate the psychological aspects that influence

research practices. I hope to garner more specific feedback from trained physical therapists and

untrained individuals to further improve the model in the future. One of the goals of this experiment

is to determine if individuals are more perceptive to asymmetric gait than more symmetric gait.

6.1 Methods

The videos for the perception experiment are made using Unity game engine. Unity is a

game engine that allows users to import and control objects in a programmable environment. The

human character model was created using an open source software called ’makehuman’ which

outputs a rigged character in the filmbox (FBX) format. In this study, I use data that was obtained

via motion capture on the CAREN system to animate the characters. The joint angles are calculated

from the data and are fed into the model using a C# script. The videos consists of an anterior view

of the gait for half the time and the other half shows the same gait pattern in the sagittal view.

Figure 6.1 is an example of the quality of the 3D video that the subjects viewed. They then filled
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Anterior View

Sagittal ViewDirection of Gait
Figure 6.1: Unity Based Walking Video. (Anterior View on Top)

out a questionnaire. The questionnaire had the subjects assess the gait on a 7 point Likert scale

to evaluate their perceived normality and symmetry. The graphic user interface (GUI) for the user

is shown in Figure 6.2. The GUI is designed to record the user’s input for normality of the gait

pattern. The first page of the GUI asks the user to fill in demographic information such as sex, age

group, and Occupation. Finally, the users are also provided a text box to enter their comments.

The experiment was conducted under USF IRB #Pro00016301. The study is in the form of

a survey where the subjects are required to view videos of multiple gait patterns. Once the subjects

view a gait pattern they proceed to rate the video on a 7 point Likert scale ranging from Normal to

Abnormal. The subjects are also provided with a text box to type in any extra comments they may

have regarding the asymmetries of the gait patterns shown in Figure 6.2.

6.1.1 Perception Catagories

The objective of featuring a variety of different gait patterns is to ascertain a viewer’s

biases. I want to understand the relationship between the perceptions and alteration to the gait.

This correlation helps find ranges of asymmetry that can be beneficial and can still be under the

threshold of public perception. Although, the subjects are not be aware of the exact nature of

change, they should be able to notice the changes.
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The subjects were shown videos that portray multiple physical changes such as:

• Normal Walking

• Able body walking with step length and time variations

• Able body walking with distal mass

• Able body walking with altered leg length

• Able body walking with combination of mass and leg length on the same side

• Able body walking with combination (dominant & non-dominant effects)

• Able body walking with stroke simulator and perception disruptor

• Prosthetic gait with different knee heights

• Prosthetic gait with different knee heights in combination with distal mass

6.1.2 Selection Protocol

The means of all gait parameters and respective CGAM scores of the data of all 10 subjects

who participated in the study involving three different speeds, leg length change, addition of distal

mass on the same leg, prosthetic and stroke simulator experiment was organized into a large data

set. I also added the gait parameters of all the perturbations of different knee heights of amputee

to this data set. A Matlab script was used to measure the largest determinant of every possible

combination of the various perturbations. The logic behind this methodology is to evaluate the

largest variation of a given set of gait parameters. As a result the selected gait patterns represent

the largest distribution of different gait patterns. Another smaller subset was chosen based on the

CGAM scores. The selected gait patterns had similar CGAM scores for different perturbations.

Sixteen videos representing asymmetric gait patterns were chosen and they are shown in Table 6.1

and the gait parameter data can be viewed in Appendix C. The visualization of the human model is

the same in all videos shown. This was done so no prosthetic or other alterations were present that
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could bias the subject’s decision. This visualization allowed the subjects to view only the effect of

these asymmetric changes on the gait patterns.

6.1.3 Gait Perception Metric

This metric is a qualitative assessment of perception bias that people have when visually

evaluating an individual’s gait. A 7-point Likert scale was used in a previous study conducted by

Handzic et al. [32, 33] to quantify the gait from normal to extremely impaired or uncanny. In this

study the subjects were asked to rate the gait patterns based on either they agreed or disagreed if

the gait pattern looks normal. The responses seen in Figure 6.2 show the options from strongly

agree (Likert rating = 7) to strongly disagree (Likert rating = 1) if the gait pattern in the video is

normal. A potential metric that can be implemented for this research might be allowing user’s to

assign a range of values for each parameter’s symmetry. This will help in evaluating the change

in perception of gait when multiple physical changes are added. Unless there is a correlation

between the CGAM and the perception of an individuals gait pattern, CGAM could incorporate

the perception as an underlying feature. This would help to include visual appearance of a gait

pattern as part of the metric. This might require a large database of individual’s perceptions or a

good predictive model, but this could help balance all aspects of a gait pattern.

6.2 Results

A total of 31 individuals took part in the study of which 7 were female and the rest were

male. Out of this 22 individual’s data, 5 female and rest male, was selected based on them rating at

least three videos. The cumulative means of all Likert scale ratings for each video for individuals

are shown in Table 6.1. These gait patterns are from the motion capture data collected in the

experiments presented in Chapters 4 and 5. The Likert scale ratings are used along side the 11 gait

parameter asymmetries that were calculated for these experiments to find the relationship between

people’s perception and individual gait parameter asymmetries. Figure 6.3 shows the Kruskal-

Wallis analysis that tests for the null hypothesis and shows the statistically significant difference
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Figure 6.2: User Interface of Walking Videos.
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Table 6.1: CGAM Scores vs Likert Scale.

Video No. Gait Pattern CGAM Likert Scale
1 Subject 3-Leg Length-Normal-Weight-Small 10.70 3.1
2 Subject 3-Leg Length-Big-Weight-Small 11.81 3.8
3 Subject 3-Normal-Tread Velocity 0.9m/s 9.79 3.8
4 Subject 4-Leg Length-Small-Weight-Small 14.31 3.6
5 Subject 4-Leg Length-Normal-Weight-Big 12.87 3.6
6 Subject 4-Normal-Tread Velocity 0.5m/s 9.88 3.7
7 Subject 5-Leg Length-Normal-Weight-Big 14.00 2.4
8 Subject 7-Leg Length-Small-Weight-Big 11.95 4.1
9 Subject 7-With Stroke Simulator 9.78 4.9

10 Subject 8-Leg Length-Big-Weight-Big 20.12 4.7
11 Subject 9-Leg Length-Normal-Self selected 1.1m/s 10.42 5.7
12 Subject 10-Leg Length-Big-Weight-Big 17.96 2.9
13 Subject 10-Leg Length-Normal-Weight-Big 11.50 3.5
14 Subject 10-With Stroke Simulator 12.60 4.1
15 Amputee-Normal 21.30 4.1
16 Amputee-9 cm Knee Asymmetry-Weight 14.50 3.0

between the different gait patterns [H(6,277) =7.4, p < 0.001 ]. The Chi-squared goodness of fit

analysis showed that the data did not follow a normal distribution [c2
(6,N=22)= 45.24, p < 0.001].

Gait pattern 11, which is Normal walking without any perturbation, is statistically significantly

different from gait patterns 1, 5, 7, 11, 12, 13, and 16. Gait pattern 7 is statistically significantly

different from gait patterns 9, 10, and 11. Gait patterns 9 and 10 are not significantly different than

11. Gait patterns 2, 3, 4, 6, 8, 14, and 15 show no statistically significant differences with any other

gait parameters with CGAM.

The individuals were able to distinguish between normal and abnormal gait patterns. There

were three able-body gait patterns without any perturbations presented to the subjects. Two of

these gait patterns are 3 and 6 were not at the individual’s normal gait velocity. Normal gait

velocity of an individual was determined by 10 meter walk test. The gait patterns of these two

subjects were rated lower than 4. However, gait pattern 11, which was an able-body gait pattern

with no perturbation and at the individual’s self selected speed, was perceived to be closest to

normal. It was interesting to see that subjects did not find gait pattern 8, 9, 10, and 14 as abnormal
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Figure 6.3: Kruskal Wallis Analysis Performed on CGAM vs Likert Scale. Video numbers
correspond to Table 6.1.

as they had the largest perturbations applied to them. Particularly the combination of large/small

LLD and large distal mass was rated more normal which may be explained by the cancellation

effect related to the asymmetric perturbations.

There were two amputee gait patterns presented to the subjects. The subjects rated the

prosthetic gait with normal knee height more normal than asymmetric knee height. It is worth

noting that the human graphic model was not changed for any of these perturbations; only the

motions were changed. The subjects were able to identify the subtle asymmetries in motion caused

by a prosthesis. The most noticeable factor would be the consistent return of the prosthesis which

is more machine like than human like. This machine like motion is further exaggerated at a lower

knee height with distal mass as the subject is still adapting to the change. Other gait patterns with

similar ratings as amputees were a combination of small LLD and mass and a combination of big

LLD and mass.

The most abnormal gait pattern was gait pattern 7 with a large distal mass and the smallest

Likert rating of 2.4. This was interesting as gait patterns 5 and 13 in the same condition were rated
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Figure 6.4: Word Bubble from User Comments. The Size of the Words Correspond to the Number
of Times a Specific Word has been used. (created at www.wordclouds.com)

slightly more normal. Gait pattern 1 with a small distal mass was also rated as abnormal. Now,

looking at all the mean ratings, it seems that a combination of leg length and distal mass seems

to appear more normal than just the distal mass. It also seems that applying the stroke simulator

to limit knee flexion does not make the subject seem abnormal. In fact gait pattern 9 with stroke

simulator was rated it to be 4.95 which is slightly above neutral.

Linear regression analysis was performed on the 16 different gait patterns and their cor-

responding Likert ratings (16*1 vector). The p-value for the data with (16 rows of videos *12

columns containing gait parameters and CGAM matrix) and without (16 rows of videos *11 gait

parameters matrix) the CGAM scores included are shown in Table 6.2. The rationale behind

performing two seperate analyses is that CGAM is inherently different from the gait parameter
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Table 6.2: p-Value from Linear Regression of Likert Scale vs Gait Parameters with and without
CGAM. (Bold indicates significance and Negative sign of coefficient indicated negative slope)

Gait Parameter p-value CGAM Coefficients p-value no CGAM Coefficients
Step Length 0.9 -0.002 0.93 0.001
Step Time 0.11 -0.033 0.14 -0.023

Vertical Force 0.02 -0.073 0.02 -0.069
Propulsive Force 0.02 -0.026 0.01 -0.028

Braking Force 0.01 0.032 0.01 0.028
Knee Angle 0.95 -0.002 0.81 -0.0067
Ankle Angle 0.02 0.067 0.01 0.078
Hip Angle 0.01 -0.016 0.01 -0.014

Ankle Moment 0.29 0.014 0.41 0.001
Knee Moment 0.78 0.005 0.70 0.007
Hip Moment 0.85 0.002 0.47 0.006

CGAM 0.44 0.060

asymmetry data. A p-value below 0.05 shows significance. Linear regression analysis finds the

relationship between Likert scale and the gait parameters and represents it in a form of a linear

equation. The coefficients of the gait parameters with a p-value greater than 0.05 can be set to zero

because they do not possess enough significance to represent the complete dataset. Ankle and hip

angle, vertical, propulsive, and braking forces show significance when the data with and without

the CGAM values were tested. However, it is interesting to note that kinetic gait parameters showed

significance consistently because they are not directly perceived visually. Ankle and hip angle are

visually perceived and this relevant because the majority of the perturbations, such as LLD and

distal mass, were added near the ankle joint. On the flip side I expected knee angles to show

significance because there were perturbations with the stroke simulator and prosthetic knee at two

different asymmetric knee heights. There was no significance in the perception of knee angle

asymmetry, this may be because subjects do not perceive knee angle asymmetries as abnormal

compared to ankle and hip angle asymmetries.

Some individuals also left comments of the different gait patterns. Figure 6.4 shows the

word cloud that was made using the comments from all the subjects, the size of the word is

directly proportional to the frequency of use. The word "left", "foot/feet", and "right" are the
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most frequent in all the comments. There is also some indication by viewing the word cloud

after removing the generic words that ankle/feet/foot (68 times) and hip/waist/torso (18 times)

is mentioned more times than knee (8 times). This may show some indication about the visual

asymmetries the subjects picked up on and the results seem to reflect this. Analyzing these words

also helps understand the terminology that regular individuals use when describing gait. In the case

presented here the subjects were able to communicate the differences they viewed using simple

words. It is expected that this word cloud will be filled with more specific terminology when more

data from trained clinicians is obtained in future studies.

6.3 Discussion

Visual perception plays a large role in the evaluation of an individual’s gait pattern in

rehabilitation. Therapists are trained to look for different aspects of an individual’s gait. This

works well for the aspects of gait that can be visually perceived. I would like to understand

the biases that drive the expectation of individuals in regards to gait patterns. Quantifying this

would help understand fundamental aspects of human perception of gait patterns. Further, by using

asymmetric gait patterns that have been quantified with known gait parameter asymmetries helps in

a methodical approach to draw relationships between visually perceived parameters and invisible

parameters such as kinetics. The videos demonstrating the gait asymmetries were generated to

represent the largest range of gait asymmetries as possible. Additionally, CGAM for each of the

gait parameters was also used to select videos to draw relationships between visual perception and

CGAM.

The results suggest that the subjects were receptive to asymmetric gait and consistently

rated it to be more abnormal. Interesting behavior was seen with cases of gait patterns when only

distal mass was seen as more abnormal than gait patterns with a combination of mass and LLD.

This may be due to the changes in step length and step time. The opposite leg to the mass takes

longer steps while the leg with the mass takes longer step time. This may have exaggerated the

asymmetry leading users to pick up on the asymmetry. In the case of a combination of LLD and
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mass, this effect is reduced as discussed in Chapter 4 which leads to a higher rating. The subjects

did rate the gait pattern without perturbation at a self selected speed higher than gait patterns at

speeds slower than self selected speeds. It is also important to note that the subjects did not notice

asymmetry in knee angles in the case of gait with stroke simulator to be abnormal, albeit they also

did not notice it to be normal. This is further reinforced by analyzing the p-values which showed

that ankle and hip angle and forces were significant but not knee angles.
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CHAPTER 7: DISCUSSION AND CONCLUSIONS

The series of experiments conducted in regards to Aims 1 - 4 have shown results that give

clues into the behavior of asymmetric gait when asymmetric devices or techniques are applied.

Figure 7.1 shows the flowchart that illustrates the execution of this research study based on the

Aims. Aim 1 seeks to prove the existence of a combination of gait parameters that are asymmetric

but provide a balanced overall gait pattern that is beneficial. Gait symmetry is often used as a

measure of gait quality more than gait function. Hence, it is important to correlate the benefits

of overall symmetry to the improvement in actual gait function. To aid with determining overall

asymmetry of a gait pattern, Aim 2 formulates CGAM that can combine multiple gait parameter

asymmetries to yield a single number index. Scaling the asymmetries using weighted inverse

covariances allows for consistent index values given the same number of gait parameters for

comparison. Another important aspect to determining the role of symmetry in function is to

estimate visual perception of individuals. The rationale for studying perception is that physical

therapists evaluate gait patterns visually. By assessing the level of abnormality in asymmetric gait

patterns, Aim 3 seeks to add another dimension to overall gait asymmetry function. Finally, Aim

4 seeks to establish the relationship between gait quality and function. This is to show that an

asymmetric gait could affect the functional gait of an individual. This is a natural follow up to Aim

1 - 3 where the results show evidence of correlation of gait asymmetry and functional outcomes of

multiple gait parameters. It also seeks to offer evidence that asymmetric rehabilitation devices and

techniques have the potential to offer low cost subjective remedies to people with asymmetric gait

patterns.
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Figure 7.1: Flowchart of the Research Aims.

7.1 Discussion

The fundamental hypothesis for this research is an individual with an asymmetric impair-

ment cannot portray symmetric gait. The approach to answer this question involved performing ex-

periments that systematically applied perturbations of the gait patterns of able-body, transfemoral

amputee, and individuals with stroke. The experiments showed that changes such as LLD and

adding distal mass affect the able-body subject’s spatial, temporal, and kinetic gait parameter

asymmetries. This experiment showed a few important results. It showed that when a gait pa-

rameter such as step length or step time move towards symmetry, the kinetic parameters become

more asymmetric. This shows that pushing one gait parameter to symmetry may drive other gait

parameters to become more asymmetric. The experiments with prosthetics with asymmetric knee

heights also showed that lower knee heights as it improved spatial and temporal symmetry but

increased the knee angle asymmetry. Similarly, individuals with stroke who trained on the GEMS

to improve their spatial and temporal symmetry showed large variations in their GRF asymmetry.

Combination of LLD and distal mass led some gait parameters to have smaller gait asymmetry

than individual effects of LLD and distal mass. This similar effect was also observed with a

combination of distal mass and asymmetric knee height on the transfemoral amputee where the

combination showed better symmetry than cases without distal mass. This shows evidence that a

balance between gait parameter asymmetries can be found by applying small asymmetric changes.
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These two broad effects provide part of the evidence necessary to show that an individual with

inherent gait asymmetry cannot have a completely symmetric gait.

To further study the effect of gait asymmetry across all gait parameters, it was necessary

to develop data driven methodologies. The result of this was the combined gait asymmetry metric

which serves as an index to use quantitative multidimensional data and represent it in a single

number. CGAM as a measure helps track overall changes from one gait pattern to another. CGAM

is not designed to find the right balance in gait parameter asymmetries that would lead to a better

overall gait. Rather, it offers a simple method to combine multiple gait parameter asymmetries.

This research can be extended to incorporate the CGAM in the search for the balance and in turn

develop more devices and techniques that can help impaired individuals achieve their desired gait

pattern. CGAM allowed a further investigation into the relationship between the gait parameters

and potentially find this balance between the different gait asymmetries. CGAM provides the index

for overall asymmetry of a given gait pattern with gait parameters that can be spatial, temporal,

kinematic, or kinetic in nature. A smaller CGAM indicates a smaller overall asymmetry among

parameters and a larger CGAM indicates the opposite. CGAM uses the inverse covariance of the

given dataset to scale the parameters with larger values to even the playing field. All the data

collected for this dissertation was analyzed using CGAM. As seen in Chapters 4 and 5 CGAM

scores follow a similar behavior to that of the majority of gait parameters. CGAM scores for

able-body gait with no perturbation is always lower than gait with a stroke simulator which is

designed to alter the gait pattern. Gait of an amputee is also shown to be more asymmetric than

able-body gait. The maximum number of parameters used to analyze CGAM score is 11 in this

dissertation, but CGAM is designed to study a much larger number of gait parameters as long

as they are represented as a percentage of symmetry for each step. To validate CGAM as an

Index, clinical measures such as TUG, 6MWT, and gait velocity were correlated for trials involving

individuals with stroke trained on GEMS and transfemoral amputees trained on split-belt treadmill.

The mild to moderate correlation shows that CGAM is promising as a clinical index using gait

parameter asymmetries. CGAM serves as a quantitative metric for defining overall asymmetry of
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an individual. It must be validated on more studies involving multiple gait impairments to show

evidence of its robustness. The metric can be used along side other indexes simply as a quantitative

measure for overall asymmetry.

Perception plays a part in the equation in evaluating gait asymmetry. This is because in

social conditions humans are able to pick up on subtle changes in an individual’s gait. Visual

evaluation of gait is also common practice in clinical assessments. Handzic et al. [32, 33] carefully

chose single parameter changes in PDW gait and evaluated people’s perception on each individual

change. I have extended this by including gait patterns that have changes in asymmetries across 11

different gait parameters. A similar Likert scale was used in the evaluation of subject’s perception

of gait from normal (7) to abnormal 1 (1). The data was selected from a range of data that had the

LLD and distal mass on the same leg, stroke simulator, and transfemoral amputee with asymmetric

knee height. CGAM was used as one of the parameters for selection in the hopes of establishing

correlation between visual perception and overall asymmetry. This was not the case from the

results presented in Chapter 6. r2 correlation showed a mild correlation with knee moments but

there was no correlation to CGAM. This was also the case with linear regression analysis, but it

was interesting to see that forces showed significance in representing this data. Another interesting

aspect that emerged from the analysis is that the subjects found gait patterns with perturbations

at the ankle more abnormal than perturbations at the knee. This is also reflected in the linear

regression analysis that ankle and hip angles have some significance in representing the data. This

definitely warrants further investigation.

Finally, to complete the investigation to find the balance of gait parameter asymmetries to

set as a goal for rehabilitation it is important to understand the relationship between gait quality and

function. Symmetry represents the quality of human gait while clinical assessments such as TUG,

6MWT, and gait velocity measure gait function. Asymmetric knee heights showed an interesting

side to this relationship where a knee height lower than 7% of normal knee height was considered

uncomfortable by the transfemoral amputee. Additionally adding a distal mass makes this worse.

Although overall symmetry improved, since, 6MWT and gait velocity were not measured like
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in the other study, it is not possible to comment on improvement in functionality. However, it

does show that a slightly lower knee height is acceptable and may be with a prosthesis which is

slightly heavier with a uniform weight distribution it may be possible to bring about better gait

function and asymmetry by leveraging the dynamic change. The clinical measures did show that

there is definitely a moderate relationship with overall asymmetry and functional improvement.

The CGAM scores were able to show similar behaviors with the clinical measures. These results

are encouraging but there needs to be more thorough evaluation of CGAM on studies with larger

subject populations.

7.2 Limitations

Although this research demonstrates the ability to describe overall asymmetry in gait pat-

terns, it is limited by the amount of information necessary to determine the outcomes for an

individual’s gait. For example, CGAM can show the differences in overall asymmetries in gait

patterns but it is not possible at the moment to define clinical significance. The CGAM has to be

tested on multiple gait patterns analyzing the same variables in order to determine the clinically

significant values. The other aspect that the CGAM cannot determine is the social and quality of

life variables. These are subjective variables widely used to estimate people’s perception and their

sense of well being. These variables may need to be looked at in addition to the objective CGAM

scores in order to determine the outcomes of rehabilitation strategies. Another limitation to CGAM

is that it relies on percentage asymmetries and hence details such as acceleration of the foot or other

deviations in gait patterns may be excluded from the analysis. This research study did not analyze

methods to identify significant parameters. Although the CGAM can combine multiple levels of

gait parameters it is not designed to identify the minimum gait parameters required to represent

the overall gait pattern. This is important because in most clinical environments it is hard to obtain

large versatile datasets.
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7.3 Main Contribution

I started this research project to create an objective metric that can evaluate gait pattern

using gait asymmetries. By conducting experiments of various asymmetric gait patterns I have

shown evidence that improving certain aspects of gait is not the correct approach. For example,

when an individual with asymmetric gait is trained to correct their spatial asymmetry, it may at

the cost of their kinetic asymmetry. My evaluation of the gait parameters spanning four different

types using CGAM has shown that an overall holistic approach is required while rehabilitating an

asymmetric gait. The goal should be to find the correct balance between all gait parameters that

contribute to an individual’s gait pattern. Further, with clinical trials I was also able to validate the

use of CGAM as a potential metric in evaluating different impaired asymmetric gait patterns. I also

found that in addition to the quantitative metric like the CGAM it is important to analyze factors

such as visual perception of asymmetric gait patterns. Initial evaluation revealed interesting aspects

of visual perception that challenges the current thinking. My research has taken a step towards

the potential implementation of rehabilitation of asymmetric gait patterns by using asymmetric

methods and also train individuals to impact multiple parameters. The research also shows the path

to potentially integrate large variety of data both quantitative and qualitative to define beneficial

gait patterns for impaired individuals.

7.4 Future Work

The future extension of this research study would be to include more data types of gait

patterns. Specifically, indicators of visual perception and subjective scales of quality of life and

discomfort. The addition of these measures will help determining clinical relevance faster for

CGAM scores. It also helps in establishing the CGAM score thresholds for each type of gait

pattern. For example, it will make it easier for clinicians to establish overall beneficial gait patterns

if the subject reports lower discomfort, better quality of life, and quantitatively the gait pattern

has a lower overall asymmetry. This can be further reinforced by adding visual perception of the

asymmetric gait pattern.
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The other direction this research might benefit is to study the effect of neuroplasticity in

rehabilitation. Quantifying this neurological programming may help understand the underlying

physiological changes that are outcomes for gait rehabilitation. Finally, being part of clinical

trials especially with GEMS showed that individuals with stroke may benefit from simply training

and exercising the correct group of muscles necessary for gait. It may be worth performing a

placebo trial with a device that offers resistance to their non-paretic limb and forces them to rely

on their paretic limb may not necessarily improve symmetry but may improve their overall gait

functionality.

7.5 Conclusion

To summarize, the dissertation shows evidence that rehabilitating gait asymmetries should

be an holistic approach. Targeting certain types of asymmetry may not be the correct approach

as it may adversely affect other gait parameters that may lead to pervasive long term effects. The

experiments conducted to prove the hypothesis showed that simple and inexpensive asymmetric

changes may provide relief to asymmetric gait patterns. The CGAM metric showed potential for

being used as a quantitative metric for multiple impairments that cause gait asymmetries. Further,

the research also suggests that it is important to consider quantitative such as CGAM, social such

as perception, and subjective such as pain and quality of life data to evaluate overall improvement

of an individual’s gait. The different components investigated using able body, transfemoral

amputee, and individuals with stroke illustrate that gait asymmetries can cause multiple parameter

asymmetries to gait patterns. The simple asymmetric perturbations applied on the gait patterns

showed that it is possible to combat the negative effects of asymmetric impairment with asymmetry.

To tackle these problems this research has shown that quantitative metrics along with social metrics

of visual perception offer a good direction in evaluating and rehabilitating asymmetric gait patterns.

95



96  

 
 
 
 
 
 

REFERENCES 
 
 
[1] Chitralakshmi K Balasubramanian, Mark G Bowden, Richard R Neptune, and Steven A 

Kautz. Relationship between step length asymmetry and walking performance in subjects 
with chronic hemiparesis. Archives of physical medicine and rehabilitation, 88(1):43–49, 
2007. 

 

[2] Eric Begleiter. The effect of the principles of dynamic symmetry on modern art and science. 
PhD thesis, Massachusetts Institute of Technology, 1984. 

 

[3] Jennifer K Berge and Ronald A Bergman. Variations in size and in symmetry of foramina 
of the human skull. Clinical anatomy, 14(6):406–413, 2001. 

 

[4] Anil Bhave, Dror Paley, and John E Herzenberg. Improvement in gait parameters after 
lengthening for the treatment of limb-length discrepancy. J Bone Joint Surg Am, 81(4):529– 
34, 1999. 

 

[5] Richard W Bohannon, Melissa G Morton, and Joan B Wikholm. Importance of four 
variables of walking to patients with stroke. International Journal of Rehabilitation 
Research, 14(3):246–250, 1991. 

 

[6] Mark G Bowden, Chitralakshmi K Balasubramanian, Andrea L Behrman, and Steven A 
Kautz. Validation of a speed-based classification system using quantitative measures of 
walking performance poststroke. Neurorehabilitation and neural repair, 22(6):672–675, 
2008. 

 

[7] Mark G Bowden, Chitralakshmi K Balasubramanian, Richard R Neptune, and Steven A 
Kautz. Anterior-posterior ground reaction forces as a measure of paretic leg contribution in 
hemiparetic walking. Stroke, 37(3):872–876, 2006. 

 

[8] M Brandstater, H de Bruin, C Gowland, and BM Clark. Hemiplegic gait: analysis of 
temporal variables. Archives of Physical Medicine and Rehabilitation, 64:583–7, Dec 1983. 



97  

[9] Raymond C Browning, Jesse R Modica, Rodger Kram, Ambarish Goswami, et al. The 
effects of adding mass to the legs on the energetics and biomechanics of walking. Medicine 
and science in sports and exercise, 39(3):515, 2007. 

 

[10] Stephanie L Carey, Kyle B Reed, Amanda Martori, Tyagi Ramakrishnan, and Rajiv Dubey. 
Evaluating the gait of lower limb prosthesis users. In Wearable Robotics: Challenges and 
Trends, pages 219–224. Springer, 2017. 

 

[11] Felipe P Carpes, Carlos B Mota, and Irvin E Faria. On the bilateral asymmetry during 
running and cycling–a review considering leg preference. Physical Therapy in Sport, 
11(4):136–142, 2010. 

 

[12] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM 
Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011. 

 

[13] Victoria L Chester, Maureen Tingley, and Edmund N Biden. An extended index to quantify 
normality of gait in children. Gait & posture, 25(4):549–554, 2007. 

 

[14] CD Cozean, William S Pease, and SL Hubbell. Biofeedback and functional electric 
stimulation in stroke rehabilitation. Archives of physical medicine and rehabilitation, 
69(6):401–405, 1988. 

 

[15] M. E. Dewar and G. Judge. Temporal asymmetry as a gait quality indicator. Medicine and 
Biological Engineering and Computation, 18:689–693, 1990. 

 

[16] Michael A Dimyan and Leonardo G Cohen. Neuroplasticity in the context of motor 
rehabilitation after stroke. Nature Reviews Neurology, 7(2):76–85, 2011. 

 

[17] SF Donker, Th Mulder, Bart Nienhuis, and Jaak Duysens. Adaptations in arm movements 
for added mass to wrist or ankle during walking. Experimental brain research, 146(1):26– 
31, 2002. 

 

[18] Larry W Forrester, Lewis A Wheaton, and Andreas R Luft. Exercise-mediated locomotor 
recovery and lower-limb neuroplasticity after stroke. Journal of rehabilitation research and 
development, 45(2):205, 2008. 

 

[19] Cynthia Gibson-Horn. Balance-based torso-weighting in a patient with ataxia and multiple 
sclerosis: A case report. Journal of Neurologic Physical Therapy, 32(3):139–146, 2008. 



98  

[20] MA Giese and Markus Lappe. Measurement of generalization fields for the recognition of 
biological motion. Vision research, 42(15):1847–1858, 2002. 

 

[21] Andrew Gitter, Joseph Czerniecki, and Kelly Weaver. A reassessment of center-of-mass 
dynamics as a determinate of the metabolic inefficiency of above-knee amputee ambulation. 
American journal of physical medicine & rehabilitation, 74(5):337–338, 1995. 

 

[22] Robert D Gregg, Tommaso Lenzi, Nicholas P Fey, Levi J Hargrove, and Jonathon W 
Sensinger. Experimental effective shape control of a powered transfemoral prosthesis. 
In IEEE International Conference on Rehabilitation Robotics:[proceedings]. Seattle, WA, 
2013. 

 

[23] Jean-Marc Guichet, Jeffrey M Spivak, Pierre Trouilloud, and Paul M Grammont. Lower 
limb-length discrepancy: An epidemiologic study. Clinical orthopaedics and related 
research, 272:235–241, 1991. 

 

[24] Burke Gurney. Leg length discrepancy. Gait & posture, 15(2):195–206, 2002. 
 

[25] Burke Gurney, Christine Mermier, Robert Robergs, Anne Gibson, and Dennis Rivero. 
Effects of limb-length discrepancy on gait economy and lower-extremity muscle activity 
in older adults. J Bone Joint Surg Am, 83(6):907–915, 2001. 
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[27] Ismet Handz̆ić and Kyle B. Reed. Comparison of the passive dynamics of walking on 
ground, tied-belt and split-belt treadmills, and via the gait enhancing mobile shoe (GEMS). 
2013. 
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[33] Ismet Handžić and Kyle B Reed. Recognition of gait impairment evaluated using an artificial 
gait stimuli. In Rehabilitation Robotics (ICORR), 2015 IEEE International Conference on, 
pages 1008–1013. IEEE, 2015. 

 

[34] Erin Hartigan, Michael J Axe, and Lynn Snyder-Mackler. Perturbation training prior to acl 
reconstruction improves gait asymmetries in non-copers. Journal of Orthopaedic Research, 
27(6):724–729, 2009. 

 

[35] Lewis I Held.  The evolutionary geometry of human anatomy: discovering our inner fly. 
Evolutionary Anthropology: Issues, News, and Reviews, 19(6):227–235, 2010. 

 

[36] Erin E Helm and Darcy S Reisman. The split-belt walking paradigm: Exploring motor 
learning and spatiotemporal asymmetry post-stroke. Physical medicine and rehabilitation 
clinics of North America, 26(4):703, 2015. 

 

[37] Walter Herzog, Benno M Nigg, Lynda J Read, and E Olsson. Asymmetries in ground 
reaction force patterns in normal human gait. Med Sci Sports Exerc, 21(1):110–114, 1989. 

 

[38] M Jason Highsmith, Brian W Schulz, Stephanie Hart-Hughes, Gail A Latlief, and Sam L 
Phillips. Differences in the spatiotemporal parameters of transtibial and transfemoral 
amputee gait. JPO: Journal of Prosthetics and Orthotics, 22(1):26–30, 2010. 

 

[39] Kieth Hill, Paul Ellis, Julie Bernhardt, Patricia Maggs, and Susan Hull. Balance and 
mobility outcomes for stroke patients: a comprehensive audit. Australian Journal of 
Physiotherapy, 43(3):173–180, 1997. 

 

[40] Stefan Hoerzer, Peter A Federolf, Christian Maurer, Jennifer Baltich, and Benno M Nigg. 
Footwear decreases gait asymmetry during running. PloS one, 10(10):e0138631, 2015. 

 

[41] Martin D Hoffman, Lois M Sheldahl, Kenneth J Buley, and Paul R Sandford. Physiological 
comparison of walking among bilateral above-knee amputee and able-bodied subjects, and 
a model to account for the differences in metabolic cost. Archives of physical medicine and 
rehabilitation, 78(4):385–392, 1997. 



100  

[42] Kenneth G Holt, Joseph Hamill, and Robert O Andres. The force-driven harmonic oscillator 
as a model for human locomotion. Human Movement Science, 9(1):55–68, 1990. 

 

[43] Craig Honeycutt, John Sushko, and Kyle B. Reed. Asymmetric passive dynamic walker. In 
Proc. IEEE Int. Conf. Rehabilitation Robotics, pages 852–857, June 2011. 

 

[44] Wouter Hoogkamer. Perception of gait asymmetry during split-belt walking. Exercise and 
sport sciences reviews, 45(1):34–40, 2017. 

 

[45] CT Huang, JR Jackson, NB Moore, PR Fine, KV Kuhlemeier, GH Traugh, and Saunders 
PT. Amputation: energy cost of ambulation. Arch Phys Med Rehabil, 60(1):18–24, 1979. 

 

[46] Francesco Iachello. Beauty in nature: Symmetry. In BEAUTY IN PHYSICS: THEORY AND 
EXPERIMENT: In honor of Francesco Iachello on the occasion of his 70th birthday, volume 
1488, pages 402–412. AIP Publishing, 2012. 

 

[47] L Jørgensen, NJ Crabtree, J Reeve, and BK Jacobsen. Ambulatory level and asymmetrical 
weight bearing after stroke affects bone loss in the upper and lower part of the femoral neck 
differently: bone adaptation after decreased mechanical loading. Bone, 27(5):701–707, 
2000. 

 

[48] Jason T Kahle, Kyle B Reed, Tyagi Ramakrishnan, Tyler D Klenow, and Jason Highsmith. 
The effect of transfemoral prosthetic interface design on gait biomechanics using a caren 
system: IRC compared to sub-ischial. In 99th AOPA National Assembly, 2016. 

 

[49] Kenton R Kaufman, Serena Frittoli, and Carlo A Frigo. Gait asymmetry of transfemoral 
amputees using mechanical and microprocessor-controlled prosthetic knees. Clinical 
Biomechanics, 27(5):460–465, 2012. 

 

[50] Kenton R Kaufman, LS Miller, and DH Sutherland. Gait asymmetry in patients with limb- 
length inequality. Journal of Pediatric Orthopaedics, 16(2):144–150, 1996. 

 

[51] KR Kaufman, Miller LS, and Sutherland DM. Gait asymmetry in patients with limb-length 
inequality. Jounral of Pediatric Orthopaedics, 16:144–150, 1996. 



101  

[52] Margaret Kelly-Hayes, Alexa Beiser, Carlos S Kase, Amy Scaramucci, Ralph B 
D’Agostino, and Philip A Wolf. The influence of gender and age on disability following 
ischemic stroke: the framingham study. Journal of Stroke and Cerebrovascular Diseases, 
12(3):119–126, 2003. 

 

[53] C Maria Kim and Janice J Eng. Symmetry in vertical ground reaction force is accompanied 
by symmetry in temporal but not distance variables of gait in persons with stroke. Gait & 
posture, 18(1):23–28, 2003. 

 

[54] Seok Hun Kim, Ismet Handzic, David Huizenga, Rebecca Edgeworth, Matthew Lazinski, 
Tyagi Ramakrishnan, and Kyle B Reed. Initial results of the gait enhancing mobile shoe 
on individuals with stroke. In Proceedings of the International Conference of the IEEE 
Engineering in Medicine and Biology Society (EMBC), Orlando, Fla, USA, 2016. 

 

[55] Seok Hun Kim, Kyle B Reed, Jason T Kahle, and Michael J Highsmith. Gait symmetry 
in transfemoral amputees. In American Academy of Orthotists & Prosthetists, Academy 
Annual Meeting and Scientific Symposium. AOPA, 2017. 

 

[56] Günther Knoblich and Rüdiger Flach. Predicting the effects of actions: Interactions of 
perception and action. Psychological Science, 12(6):467–472, 2001. 

 

[57] Lynn T Kozlowski and James E Cutting. Recognizing the sex of a walker from a dynamic 
point-light display. Perception & Psychophysics, 21(6):575–580, 1977. 

 

[58] Christina-Anne Lahiff. Simulation of hemiparetic function using a knee orthosis with 
variable impedance and a proprioception interference apparatus. Master’s thesis, University 
of South Florida, 2017. 

 

[59] Christina Anne Lahiff, Tyagi Ramakrishnan, Seok Hun Kim, and Kyle B Reed. Knee 
orthosis with variable stiffness and damping that simulates hemiparetic gait.  In 38th 
Annual International Conference of the IEEE Engineering in Medicine and Biology Society 
(EMBC), 2016. 

 

[60] Séléna Lauzière, Carole Miéville, Cyril Duclos, Rachid Aissaoui, and Sylvie Nadeau. 
Perception threshold of locomotor symmetry while walking on a split-belt treadmill in 
healthy elderly individuals 1, 2, 3. Perceptual & Motor Skills, 118(2):475–490, 2014. 



102  

[61] Edward D Lemaire, David Nielen, and Marie Andrie Paquin. Gait evaluation of a 
transfemoral prosthetic simulator. Archives of physical medicine and rehabilitation, 
81(6):840–843, 2000. 

 

[62] Michael D Lewek, Claire E Bradley, Clinton J Wutzke, and Steven M Zinder. The 
relationship between spatiotemporal gait asymmetry and balance in individuals with chronic 
stroke. Journal of applied biomechanics, 30(1):31–36, 2014. 

 

[63] Anthony C Little. Domain specificity in human symmetry preferences: Symmetry is most 
pleasant when looking at human faces. Symmetry, 6(2):222–233, 2014. 

 

[64] XC Liu, Guy Fabry, Guy Molenaers, Johan Lammens, and Pierre Moens. Kinematic 
and kinetic asymmetry in patients with leg-length discrepancy. Journal of Pediatric 
Orthopaedics, 18(2):187–189, 1998. 

 

[65] Albert C Lo, Victoria C Chang, Milena A Gianfrancesco, Joseph H Friedman, Tara S 
Patterson, and Douglas F Benedicto. Reduction of freezing of gait in parkinson’s disease by 
repetitive robot-assisted treadmill training: a pilot study. Journal of neuroengineering and 
rehabilitation, 7(1):51, 2010. 

 

[66] Susan E Lord, Kathryn McPherson, Harry K McNaughton, Lynn Rochester, and Mark 
Weatherall. Community ambulation after stroke: how important and obtainable is it and 
what measures appear predictive? Archives of physical medicine and rehabilitation, 
85(2):234–239, 2004. 

 

[67] Fani Loula, Sapna Prasad, Kent Harber, and Maggie Shiffrar. Recognizing people from 
their movement. Journal of Experimental Psychology: Human Perception and Performance, 
31(1):210, 2005. 

 

[68] Sarah J Mattes, Philip E Martin, and Todd D Royer. Walking symmetry and energy cost in 
persons with unilateral transtibial amputations: matching prosthetic and intact limb inertial 
properties. Archives of physical medicine and rehabilitation, 81(5):561–568, 2000. 

 

[69] Jennifer McConvey and Susan E Bennett. Reliability of the dynamic gait index in 
individuals with multiple sclerosis. Archives of physical medicine and rehabilitation, 
86(1):130–133, 2005. 

 

[70] Tad McGeer. Passive walking with knees. In 1990 IEEE International Conference 
Proceedings on Robotics and Automation, pages 1640–1645. IEEE, 1990. 



103  

[71] Masahiro Mori, Karl F MacDorman, and Norri Kageki. The uncanny valley [from the field]. 
IEEE Robotics & Automation Magazine, 19(2):98–100, 2012. 

 

[72] AMS Muniz and J Nadal. Application of principal component analysis in vertical ground 
reaction force to discriminate normal and abnormal gait. Gait & posture, 29(1):31–35, 2009. 

 

[73] H Muratagic, Ramakrishnan T, and Reed KB. Combined effects of leg length discrepancy 
and the addition of distal mass on gait asymmetry. Gait and Posture, 2017. 

 

[74] Haris Muratagic. Passive symmetry in dynamic systems and walking. Master’s thesis, 
University of South Florida, 2015. 

 

[75] Haris Muratagic. Passive symmetry in dynamic systems and walking. Master’s thesis, 2015. 
 

[76] FB Naini, MT Cobourne, F McDonald, and ANA Donaldson. The influence of craniofacial 
to standing height proportion on perceived attractiveness. International journal of oral and 
maxillofacial surgery, 37(10):877–885, 2008. 

 

[77] B Nigg, R Robinson, and W Herzog. Use of force platform variables to ouantify the effects 
of chiropractic manipulation on gait symmetry. Journal of manipulative and physiological 
therapeutics, 10(4), 1987. 

 

[78] Lee Nolan,  Andrzej Wit, Krzysztof Dudziñski, Adrian Lees,  Mark Lake, and Michał 
Wychowañski. Adjustments in gait symmetry with walking speed in trans-femoral and 
trans-tibial amputees. Gait & posture, 17(2):142–151, 2003. 

 

[79] Kara Patterson, Iwona Parafianowicz, Cynthia Danells, and William Mcllroy. Gait 
asymmetry in community-ambulating stroke survivors. Archivies of Physical Medicine and 
Rehabilitation, 89(2):304–310, 2008. 

 

[80] Kara K Patterson, Iwona Parafianowicz, Cynthia J Danells, Valerie Closson, Mary C Verrier, 
W Richard Staines, Sandra E Black, and William E McIlroy. Gait asymmetry in community- 
ambulating stroke survivors. Archives of physical medicine and rehabilitation, 89(2):304– 
310, 2008. 

 

[81] Jacquelin Perry, Mary Garrett, JoAnne K Gronley, and Sara J Mulroy. Classification of 
walking handicap in the stroke population. Stroke, 26(6):982–989, 1995. 



104  

[82] JR Perttunen, E Anttila, J Södergård, J Merikanto, and PV Komi. Gait asymmetry in 
patients with limb length discrepancy. Scandinavian journal of medicine & science in sports, 
14(1):49–56, 2004. 

 

[83] Tyagi Ramakrishnan. Asymmetric unilateral transfemoral prosthetic simulator. Master’s 
thesis, University of South Florida, 2014. 

 

[84] Tyagi Ramakrishnan, Jason T Kahle, Jason Highsmith, Tyler D Klenow, and Kyle B Reed. 
Combined gait asymmetry metric based on biomechanics -comparison of IRC, brimless, 
and able-body. In 99th AOPA National Assembly, 2016. 

 

[85] Tyagi Ramakrishnan, Christina-Anne Lahiff, Asgard Kaleb Marroquin, and Kyle B Reed. 
Position and weight activated passive knee mechanism. In ASME 2015 International 
Mechanical Engineering Congress and Exposition, pages V003T03A073–V003T03A073. 
American Society of Mechanical Engineers, 2015. 

 

[86] Tyagi Ramakrishnan, Haris Muratagic, and Kyle B Reed. Combined gait asymmetry metric. 
In 38th Annual International Conference of the IEEE Engineering in Medicine and Biology 
Society (EMBC), 2016. 

 

[87] Tyagi Ramakrishnan and Kyle B Reed. Anatomically scalable transfemoral knee design. In 
IAJC/ISAM, 2016. 

 

[88] Tyagi Ramakrishnan, Millicent Schlafly, and K Reed.  Biomimetic transfemoral knee 
with gear mesh locking mechanism. International Journal of Engineering Research & 
Innovation, 2017. 

 

[89] Tyagi Ramakrishnan, Millicent Schlafly, and Kyle B Reed. Evaluation of 3d printed 
anatomically scalable transfemoral prosthetic knee. In Rehabilitation Robotics (ICORR), 
2017 International Conference on, pages 1160–1164. IEEE, 2017. 

 

[90] JP Regnaux, D Pradon, N Roche, J Robertson, B Bussel, and B Dobkin. Effects of loading 
the unaffected limb for one session of locomotor training on laboratory measures of gait in 
stroke. Clinical biomechanics, 23(6):762–768, 2008. 

 

[91] D Reisman, H McLean, J Keller, K Danks, and A Bastian. Repeated split-belt treadmill 
training improves poststroke step length asymmetry. Neurorehabilitation, 27, Feb 2013. 



105  

[92] D. Reisman, R. Wityk, and A. Bastian. Split-belt treadmill walking adaptation in post-stroke 
hemiparesis. J. Neurologic Physical Therapy, 29:196, 2005. 

 

[93] Darcy S Reisman, Heather McLean, and Amy J Bastian. Split-belt treadmill training post- 
stroke: a case study. Journal of Neurologic Physical Therapy, 34(4):202, 2010. 

 

[94] Darcy S Reisman, Heather McLean, Jennifer Keller, Kelly A Danks, and Amy  J 
Bastian. Repeated split-belt treadmill training improves poststroke step length asymmetry. 
Neurorehabilitation and neural repair, 27(5):460–468, 2013. 

 

[95] Darcy S Reisman, Robert Wityk, Kenneth Silver, and Amy J Bastian. Split-belt treadmill 
adaptation transfers to overground walking in persons poststroke. Neurorehabil Neural 
Repair, 23(7):735–744, Sep 2009. 

 

[96] PT Robert Gailey PhD. Review of secondary physical conditions associated with lower- 
limb amputation and long-term prosthesis use. Journal of rehabilitation research and 
development, 45(1):15, 2008. 

 

[97] Melvyn Roerdink, Claudine JC Lamoth, Gert Kwakkel, Piet CW Van Wieringen, and Peter J 
Beek. Gait coordination after stroke: benefits of acoustically paced treadmill walking. 
Physical Therapy, 87(8):1009–1022, 2007. 

 

[98] Jaimie A Roper, Matthew J Terza, and Chris J Hass. Perception of symmetry and asymmetry 
in individuals with anterior cruciate ligament reconstruction. Clinical Biomechanics, 40:52– 
57, 2016. 

 

[99] Todd D Royer and Philip E Martin. Manipulations of leg mass and moment of inertia: 
effects on energy cost of walking. Medicine and science in sports and exercise, 37(4):649– 
656, 2005. 

 

[100] Adam Rozumalski and Michael H Schwartz. The gdi-kinetic: a new index for quantifying 
kinetic deviations from normal gait. Gait & posture, 33(4):730–732, 2011. 

 

[101] Heydar Sadeghi, Paul Allard, Prancois Prince, and Hubert Labelle.  Symmetry and limb 
dominance in able-bodied gait: A review. Gait and Posture, 12:34–45, 2000. 



106  

[102] Margrit Schaarschmidt, Susanne W Lipfert, Christine Meier-Gratz, Hans-Christoph Scholle, 
and Andre Seyfarth. Functional gait asymmetry of unilateral transfemoral amputees. Human 
movement science, 31(4):907–917, 2012. 

 

[103] LM Schutte, U Narayanan, JL Stout, P Selber, JR Gage, and MH Schwartz. An index for 
quantifying deviations from normal gait. Gait & posture, 11(1):25–31, 2000. 

 

[104] Michael H Schwartz and Adam Rozumalski. The gait deviation index: a new comprehensive 
index of gait pathology. Gait & posture, 28(3):351–357, 2008. 

 

[105] Matthew K. Seeley, Brian R. Umberger, Jody L. Clasey, and Robert Shapiro. The relation 
between mild leg-length inequality and able-bodied gait asymmetry. Journal of Sports 
Science and Medicine, 9:572–579, 2010. 

 

[106] HB Skinner and RL Barrack. Ankle weighting effect on gait in able-bodied adults. Archives 
of Physical Medicine and Rehabilitation, 71:112–115, 1990. 

 

[107] S Srinivasan, ER Westervelt, and AH Hansen. A low-dimensional sagittal-plane forward- 
dynamic model for asymmetric gait and its application to study the gait of transtibial 
prosthesis users. Journal of biomechanical engineering, 131(3):031003, 2009. 

 

[108] Teresa M Steffen, Timothy A Hacker, and Louise Mollinger. Age-and gender-related test 
performance in community-dwelling elderly people: Six-minute walk test, berg balance 
scale, timed up & go test, and gait speeds. Physical therapy, 82(2):128–137, 2002. 

 

[109] Steven I Subotnick. Limb length discrepancies of the lower extremity (the short leg 
syndrome). Journal of Orthopaedic & Sports Physical Therapy, 3(1):11–16, 1981. 

 

[110] Frank Sup, Amit Bohara, et al.  Design and control of a powered transfemoral prosthesis. 
The International journal of robotics research, 27(2):263–273, 2008. 

 

[111] John Sushko. Asymmetric passive dynamic walker used to examine gait rehabilitation 
methods. Master’s thesis, University of South Florida, 2011. 

 

[112] John Sushko, Craig Honeycutt, and Kyle B Reed. Prosthesis design based on an asymmetric 
passive dynamic walker. In Biomedical Robotics and Biomechatronics (BioRob), 2012 4th 
IEEE RAS & EMBS International Conference on, pages 1116–1121. IEEE, 2012. 



107  

[113] A Joseph Threlkeld, Lance D Cooper, Brock P Monger, Aric N Craven, and Howard G 
Haupt. Temporospatial and kinematic gait alterations during treadmill walking with body 
weight suspension. Gait & posture, 17(3):235–245, 2003. 

 

[114] E. B. Titianova and I. M. Tarkka. Asymmetry in walking performance and postural sway in 
patients with chronic unilateral cerebral infarction. Journal of rehabilitation research and 
development, 32:3236–244, 1995. 

 

[115] Natalie Vanicek, David J Sanderson, Romeo Chua, Dave Kenyon, and J Timothy Inglis. 
Kinematic adaptations to a novel walking task with a prosthetic simulator. JPO: Journal of 
Prosthetics and Orthotics, 19(1):29–35, 2007. 

 

[116] Erin V Vasudevan and Eileen M Kirk. Improving interlimb coordination following stroke: 
How can we change how people walk (and why should we)? In Replace, Repair, Restore, 
Relieve–Bridging Clinical and Engineering Solutions in Neurorehabilitation, pages 195– 
202. Springer, 2014. 

 

[117] James C Wall and George I Turnbull. Gait asymmetries in residual hemiplegia. Archives of 
physical medicine and rehabilitation, 67(8):550–553, 1986. 

 

[118] Scott C White, Louise A Gilchrist, and Bryan E Wilk. Asymmetric limb loading with true 
or simulated leg-length differences. Clinical Orthopaedics and Related Research, 421:287– 
292, 2004. 

 

[119] Allyn L Woerman and Stuart A Binder-Macleod. Leg length discrepancy assessment: 
accuracy and precision in five clinical methods of evaluation. Journal of Orthopaedic & 
Sports Physical Therapy, 5(5):230–239, 1984. 

 

[120] Vivek Yadav and Robert L Sainburg. Limb dominance results from asymmetries in 
predictive and impedance control mechanisms. PloS one, 9(4):e93892, 2014. 

 

[121] Kitty YM Yeung, Jingyee Chee, Yi Song, Jing Kong, and Donhee Ham.  Symmetry 
engineering of graphene plasmonic crystals. Nano letters, 15(8):5001–5009, 2015. 



108 

 
 
 
 
 

APPENDIX A: COPYRIGHT PERMISSIONS 

 
A.1 Elsevier Copyright Permissions for Chapter 4 
 

 



109 

 
 
 
 
 

APPENDIX B: CGAM FUNCTION 

 
B.1 CGAM Matlab Function 
 
function [ Score, StdScore ] = CGAM( D , Par1,Par2) 

% CGAM Function 

C = cov(D(:,[Par1:Par2])); % Finding Covariance 

IC = inv(C);% Inverse Covariance 

[r,c] = size(D); % Finding row length  

Var = (1/((sum(sum(IC))))); % 1/(sum of inverse covariance) 

for j = 1:1:length(r) 

d(j) = real((sqrt(D(j,[Par1:Par2])*IC*D(j,[Par1:Par2])'*Var))); 

end 

Score = mean(d); % Mean of all CGAM distances 

StdScore = std(d)/sqrt(length(d)); % Standard Error 

end 

D = n*m data set 

Par1 = Beginning column parameter number  

Par2 = End column parameter number 

Example: We have a dataset with 10 rows but we only want to analyze the columns 2 through 7 

then Par1 = 2 and Par2 = 7. 
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