

Introduction

Many situations involve high dependence on visual input in order to safely and effectively operate machinery or navigate a high stress environment. As a result of this overstimulation, the decision making ability can be degraded constituting a risk for the subject. To address this issue, another mean of communicating information to the operator has been developed: Vibro-vest is able to convey directional information to operators whose visual channels are near overload and whose tasks involve 3D awareness (i.e. flying), as opposed to planar awareness (i.e. driving).

Motivation

The Vibro-vest would be able to:

- Transmit navigation information in 3-D via sensory channel
- Increase maneuverability and dexterity when operating in 3-D environments
- Reduce risk to operators with saturated visual input

Vibro-Vest Design

- Vibro-vest will use an array of vibrotactors placed on both the front and back of the torso
- The locations of the vibrotactors are determined by the "tap-on-the-shoulder" principle, which states that stimuli on the torso can represent directions to be followed: front is front, left is left, etc.
- Vibrotactors will be controlled by a control board programmed in C++ language.

Resolution of Vibration

The Vibro-vest will have a total of 66 combinations of vibrations that will determine the same amount different directions.

- The sections of the exploded sphere show the individual angular regions that can be identified through the combination of the vibrating motors.
- Users would be able to identify each of the angular regions
- 16 vibrotactors were added to the vest and were distributed as shown in the figure. The back side of the vest has the same pattern
- A total of 66 angular regions can be encoded using combinations of vibrating vibrotactors
 - The vibrating combinations and locations of the vibrotactors were determined using haptic perception theories: the direction indicated by two vibrating motors will be the midpoint between them

Advantages of Pancake Vibrating Motors:

- Low price
- High vibrating frequency
- Low voltage needed to operate

Disadvantages:

- Short and delicate connecting cables
- Overheating

Vibro-Vest: Directional Information in Three Dimensions **Daniel E. Perez, Philip Logan, and Kyle B. Reed**

Department of Mechanical Engineering

Advantages of Phidget Interface Kit control board:

- Low price
- Compatible with C++ language
- Able to power programmed combinations of vibrotactors Disadvantages:
 - Non-variable voltage output
 - The Phantom Omni was used for the familiarization stage of the experiment
 - The pointer position of the Phantom Omni determined the vibrating angular regions

Experiment

- All male subjects
- Subjects between 25 and 35 years old

Part 1: Familiarization with the device

 Each subject was fitted with the Vibro-vest and asked to manipulate the Phantom Omni in order to familiarize with the resolution of the angular regions • The loop shows the flow of information, starting at the subject and ending on the Vibro-

Part 2: Testing

vest

- Subjects were given a ball which detailed and numbered each angular region
- 11 Programmed separate spatial directions were communicated through the vest
- Subjects were asked to indicate the direction that they perceived from the Vibro-vest using the ball

Conclusions and Future Work

- A novel technique of communicating spatial information in 3-D was presented The tested design succeeded in achieving an intuitive perception of spatial direction; however, further design optimizations are necessary in order to communicate spatial information in a better way:
 - Earphones can be given to the subjects to block audible perception of the vibrating motors
 - Improve the wire isolation since vibrating wires gave false directional information to the subjects

Applications

- Development of a navigation system that helps to reduce visual overstimulation for operators whose visual channels are approaching overload like:
 - Combat pilots
 - Crane operators
- UAV pilots
- Warning system of external threats for the mentioned operators
- Navigation system for visually impaired individuals
- Entertainment:
 - Video games application

Acknowledgments

- Dr. Kyle Reed, Department of Mechanical Engineering, University of South Florida
- The Department of Mechanical Engineering, University of South Florida
- The Spring 2012 Haptics Class

motors will be the midpoint between them